
Audiovisual production invariant searching

Siba Haidar* — Philippe Joly* — Bilal Chebaro**

* Institut de Recherche en Informatique de Toulouse
118, route de Narbonne - 31062 Toulouse, France
{shaidar, joly}@irit.fr

** Université Libanaise, Faculté de Sciences section 1
bchebaro@ul.edu.lb

RÉSUMÉ. La recherche de l'information non textuelle est un point fondamental dans l'industrie
audiovisuelle où les besoins d'outils pour manipuler des contenus multimédia sont importants
et diversifiés. Dans les documents vidéo, l'extraction de signature de style est un procédé
extrêmement intéressant, puisqu’il fournit une nouvelle caractéristique pour la classification
de contenus. Les documents vidéo peuvent avoir des caractéristiques et des propriétés très
différentes. Cependant, on peut identifier des points communs à toutes les émissions
politiques, ou toutes les retransmissions de matchs de football, ou encore tous les films
réalisés par un même réalisateur. Ces points communs sont ce que nous appelons “invariants
de production”. Un invariant de production caractérise un document ou une série de
documents appartenant à une même "collection", ou tourné par un même réalisateur, ou
produit suivant les mêmes directives.
Dans ce papier, nous proposons une transcription formelle de ce que nous appelons "un
invariant de production" dans un segment vidéo à travers l’étude de l’évolution des
caractéristiques de bas niveau. Nous proposons un algorithme pour l'extraction de segments
invariants, applicable sur tout document audiovisuel, indépendamment de la nature des
caractéristiques, de leur sens, et du type ou de la durée de l’invariant.
ABSTRACT. Information searching in non-textual media is a fundamental point of interest,
especially in the audiovisual industry where there is still an important need of tools for
manipulating multimedia contents. In video documents, the style signature extraction is a
highly interesting process since it provides a new feature for contents classification. Video
documents may have very different characteristics and properties. However, we all agree that
there are some common points between all political programs, or all football matches, or,
time to time, between all the movies realized by a given director. These common points are
what we call "invariants". An "invariant of production" characterizes a document or a set of
documents belonging to a same "collection", of a same director, or produced following the
same set of guidelines.
In this paper, we present a hypothetical definition of what we call production invariant in a
video segment. We propose an algorithm for the invariant segment extraction, applicable on
all video features independently with the feature nature and meaning, and with this invariant
length or type.
MOTS-CLÉS : indexation audiovisuelle, comparaison de caractéristiques, extraction de
caractéristiques vidéo.
KEYWORDS: audiovisual indexing, feature comparison, video feature extraction.

1. Introduction

Video feature extraction is used for segmenting, classifying and indexing video
documents. Video content analysis is a first step before applying information
retrieval and browsing tools in order to satisfy some queries on audiovisual content.

Many research works were made to extract meaningful information on
production styles, in order to classify them and to construct robust summaries
(Yahiaoui, 2003). New description strategies were introduced allowing creating
ToCs (Tables of Content) and index of a video sequence. (Pinsach, 2003) focuses
on the semantic characterization of videos sequences in order to enrich the ToC and
Index structures.

The use of extracted video feature to find what could be production invariant
relative to a given set of video document is very important to classifying semantic
scenes and creating ToCs and Index. An invariant of production, as we define it, is
what characterizes a document or a set of documents belonging to a same
"collection", of a same director, or produced following the same set of guidelines.
Once defined and extracted for a set of audiovisual documents, these invariants are
useful in various operations concerning documents’ semantic analysis. Since
invariants characterize video segments, they can be used later to identify or localize
them. Another benefit we can see in "invariants", is the validation of production
charts, i.e., a director can use them to follow up the evolution of his realizations and
see whether or not they do apply his rules and guidelines.

We consider that these production invariants will appear as the repetition of the
same sequence of values of different low-level features extracted from two different
streams or two different parts of a same stream. The size of these schemas may vary,
and all the extracted features are not necessarily involved in the expression of these
sequences. It can be for example the iteration of some specific values when the
anchor frame appears in a TV News program, or at the beginning of a same game
show broadcasted on two different days.

To localize and extract a production invariant, we rely on the set of all possible
features characterizing an audiovisual document (Adami and al., 2002) which can
be extracted and quantized to build numeric time series. Then we consider the
invariant search as a segment seen as a common- or a similar- or even as a repetitive
sequence of values, from the point of view of one or multiple features.

In this context, we need to determine whether two given features (or more
exactly their time series) display a similar behavior. The problem is interesting (and
difficult) because, unlike traditional tools for audiovisual content querying, we do
not have, a priori, a sample or model of what we are looking for. This means we do
not know previously what we are searching for, where it could be or even what
dimension or length it could have.

In this paper, we present a simple algorithm for invariant video content
identification, based on a two-level approach. It requires neither any previous
knowledge about the feature’s nature or its behavior, nor user intervention in order
to define or change thresholds or filters, to produce a result. The algorithm
automatically accommodates thresholds and filters to feature general properties.
This permits it to be applied on different types of time series.

Since we propose a new algorithm for comparing two time series, we quickly
describe the state-of-art of similarity measures and indexing techniques that have
been proposed for time series analysis.

The main idea behind similarity measures is that they should allow imprecise
matches. There are several applications of such measures. For example, they can be
used to cluster the different time series into similar groups, or to classify a time
series based on a set of known examples. Another point of interest is the indexing
problem which can be formalized as : "given a set of time series Q, prepare an index
offline such that given a query series q, the time series in Q that are most similar to
q can be reported quickly" (Gunopulos and al., 2000). All similarity measures
intend to bypass obstacles, such as, the subsequence similarity problem, the rule
discovery problem, and clustering problems which have to be overcome in our
approach. Furthermore, we consider that, as well as accuracy, efficiency (in terms of
computational cost) is a challenging issue.

Euclidean Similarity Measure views each sequence as a point in n-dimensional
Euclidean space (n=length of sequence) and defines the similarity measure between
X and Y as Lp(X,Y). Although it is very easy to compute, it does allow neither
noise nor short-term fluctuations, nor temporal shifts. Measures based on
transformation rules, like for example moving average is a well known technique
for smoothening time sequences. Combined with Euclidean distance, it intuitively
produces similarity results but does not fit our requirements. For example, it does
not preserve relevant and meaningful peaks, like the ones we can observe in the
evolution of action/motion features.

Dynamic time-warping based matching is another popular technique in the
context of speech processing (Sakoe and al., 1978), sequence comparison (Erickson
and al., 2002), and shape matching (McConnell, 1991). This method has been used
in (Guttman, 1984) to match a given pattern in time-series data. The essential idea is
to match one dimensional pattern while allowing for local stretching of the time
parameterization (Brendt and al., 1994). It is a robust measure that allows non-
matching gaps, amplitude scaling, and offset translation.

Longest Common Subsequence Measures: based on the edit distance (Bozkaya
and al., 1997), (Ganascia, 2002) works on sequences with slightly different length.
It considers two sequences to be similar if they have enough non-overlapping time-
ordered pairs of subsequences that are similar. The algorithm consists of finding all
atomic similar subsequence pairs, which is achieved by a spatial self-join over the
sets of all atomic windows. Edit distance is also used for approximate text matching,

based on dynamic programming. Some methods are inspired from algorithms for
fast text searching (Argawal and al., 1995), (Ganascia, 2002), like finding text
subsequence that approximately matches a given string. Text sequences normally
consist of a few discrete symbols as opposed to continuous numbers that makes the
similarity measures and the search methods quite different.

2. Multi-level analysis coupling using morpho-math filters

All the similarity measures proposed in the domain of time series do not intend
to merge the result of multiple comparisons. They are supposed to be applied on one
type of time series at a time. Thus, parameterization issue is not a problem for them;
it can be fixed once on the beginning of the processing depending on the type of
studied time series. In our case, a production invariant is identified after combining
all studied features results.

As we will show, features extracted from an audiovisual document do not have a
comparable evolution.

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

time progress

Mean luminance (0:500)

(a)

0 50 100 150 200 250 300 350 400 450 500
0

200

400

600

800

1000

1200

1400

1600

1800

2000

time progress

Contrast (0:500)

(b)

Figure 1. The mean luminance feature smoothness (a) relative to the eventful color
contrast feature (b). Both are extracted from the same audiovisual segment.

For example, we have defined a measure of the color contrast which is obtained
here by iteratively measuring the distance between the two main dominant colors,
given by the following formula:

() ⎟
⎠

⎞
⎜
⎝

⎛ +
×+−=

2
log,distcirc 2

21
121

SS
HHLLcontrast [1]

Where L1, L2 are respectively the luminance of the two dominant colors, H1,H2 the hue, and S1, S2 the
saturation, and where district(x,y) is the circular distance between x and y, knowing that x and y vary
inside certain boundaries

This feature is very noisy and eventful (Fig.1.a), and presents many peaks. On
the contrary, a feature with a very different behavior is the mean luminance, which
calculates the average of pixels' luminance in each frame, is very smooth and calm.

As it appears in fig.1, no normalization was applied on features, because until
now, all treatments applied are relative to each feature and so there is no meaning of
a scale comparison.

Considering this fact, no feature nature discrimination is allowed; the
comparison algorithm is applied uniformly on all the time series, despite their
smoothness. However, we accommodate the processing by varying the thresholds
relatively to each sequence property.

0 100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

2000

2500

3000

3500

time progress

Quantity of Movement (0:1000)

Figure 2. Meaningful peaks in the quantity of movement feature; they announce
scene change. They are either sudden peaks designating a cut transition, or
progressive when occurs a cross-dissolve.

Also, we allow no smoothing considering that peaks carry important information
related with an event happening during the video, like a lightning effect or a sudden
movement or even a view or a scene change (see fig.2 for example). At the matter of
fact, only a few peaks may be due to noise.

For this reason, we proposed a new algorithm, able to set automatically its
parameters, to conform features special properties.

2.1. Matching process

Our sequence matching method, like most of the matching methods, in an
environment with a large set of data sequences, works in two phases. In the first
phase, only a finite number of data sequences are kept after a filtering process. We
consider that these sequences are matching candidates. In the second phase, all
candidate sequences are verified for the actual matching using a morphomath
comparison filter.

Before generalizing and giving a definition for matching sequences in scientific
experiments, we would like to address the following points for motivation:

- The relative times that the corresponding samples are taken are almost the
same in both sequences. This means that lengths of sequences to be
matched should be close to each other.

- Two sequences can be considered as matching (or similar) if the majority
of their segments elements match.

Definition 2.1 Matching sequences: Two subsequences of length l are considered to
be similar if their similarity covering measure bypasses a certain threshold.

Definition 2.2 Covering: The covering is the percentage of sub sequences touched
by the morphomath coupling process. It is given by the following formula;

()
essubsequencnbtotal
essubsequenccouplednbJIcover ji __

_),(= [2]

Where nb(coupled_subsequences) is the number of subsequences coupled a least once in the process of
similarity comparison

The choice of the similarity threshold covering depends on the accuracy
requested for the similarity measure.

The algorithm proceeds in a dichotomous approach in order to avoid useless
comparisons. No continuation in depth is made unless suspected resemblance is
possible. We introduce here an algorithm that we call the Recursive Quadratic
Intersection (Algo.1).

RQI(a,b,t)
{
 % a & b are of similar length

% t is the desired length of candidates

if [min(a),max(a)]∩[min(b),max(b)]≠Ø
 if length(a)>=t & length(b)>=t
 divide equally a into a1 and a2

divide equally b into b1 and b2

RQI(a1,b1,t)

RQI(a2,b1,t)

RQI(a1,b2,t)

RQI(a2,b2,t)
 else add (a,b) to potentialCandidates
 return potentialCandidates
}

Algo.1 The extraction of potential candidates for resemblance from two sequences of
similar length.

The result is a set of candidate intervals all of which have the requested length l
so that: tlt

<≤
2

.

() () (){ }lJIJIbJaIJIRandidatespotentialC jijijiji ==∧≈∧⊂∧⊂== lengthlength,,

Mean luminance feature

0 20 40 60 80 100 120 140 160
100

150

200

250

(a)

0 20 40 60 80 100 120 140 160
0

50

100

150

200

250

300

(b)

0 20 40 60 80 100 120 140 160
120

140

160

180

200

220

240

(c)

0 20 40 60 80 100 120 140 160
200

205

210

215

220

225

(d)

Contrast feature

0 20 40 60 80 100 120 140 160
0

200

400

600

800

1000

1200

1400

1600

1800

2000

(e)

0 20 40 60 80 100 120 140 160
400

600

800

1000

1200

1400

1600

(f)

0 20 40 60 80 100 120 140 160
0

200

400

600

800

1000

1200

1400

1600

1800

(g)

0 20 40 60 80 100 120 140 160
0

200

400

600

800

1000

1200

1400

1600

1800

2000

(h)

Figure 3. Extraction of hypothesized candidates found by applying the algorithm
using two different features, for t=20 s environ.

Once potential candidates are filtered, given two sequences, we shall proceed to
the resemblance verification by applying the morphological multi-scale comparison
using a structuring element of size α to each couple (Ii,Jj). The value of α is
determined on the base of the feature variation. (Algo. 2)

verifySimilarity(Ii,Jj,α){

{

 % Ii &Jj are of similar length

% α is the morphomath filter

if covering(Ii,Jj,α)> P % similarity threshold

 add (Ii,Jj) to similarCandidates

 return similarCandidates

}

coveringCalculation(Ii,Jj,α)

{

 if length(Ii)&length(Jj)< α& [e(Ii),d(Ii)]∩[e(Jj),d(Jj)]≠Ø

 CountOccurrence if first time coupled

 else

 divide Ii into Ii1 & Ii2

divide Jj into Jj1 & Jj2

for each couple:

if [e(Iii),d(Iii)]∩[e(Jjj),d(Jjj)]≠Ø

 coveringCalculation(Iii,Jjj,α)

 At the end compute as shown in equation [2]

}

Algo.2 Similarity verification using morphomath filter (structuring element) which
length is adapted to the sequences coefficient of variation.

 Here we used e(x) and d(x) to designate, respectively, the morphomathematical
erosion and dilation of a sequence x, computed in a one-dimensional space, with the
filter size α. In our experiments, we used the minimum and maximum, as classical
erosion and dilation.

The reason we have chosen the morphomathematical operators in subsequences
comparison is that these operators perform fast and are well adapted to handle value
fluctuation and imprecision inside a segment of filter size at the same time.

The filter α is chosen relatively for each sequence (feature), based on the
following reasoning. The more the sequence presents variations in its evolution, the
bigger will be α in order to allow matching of two sequences. In the contrary, the
smoother is the shape of curves; the more precise we have to be in comparing final
sequences, thus the smaller the morphomath filter will be.

The filter depends of the variations of the time series, which is defined as
follows. If Sx is the standard deviation of a set of samples xi and m its mean, then
V=Sx/m, (Weisstein, 1999). So, α=f(V).

This means the morphomath filter is related to the coefficient of variation. This
work hypothesis is to be validated by further works and experiments. For the time
being, the relation between those two observed parameters is still empirical. The
threshold varies between two boundaries, which assert our hypothesis.

α =2 the covering is 83%
α =4 the covering is 93%
α =6 and up the covering is 100%
CoefficientOfVariation=0.1865

0 20 40 60 80 100 120 140 160
0

50

100

150

200

250

300

α =2 the covering is 90%
α =4 the covering is 91%
α =6 the covering is 95%
α =12 the covering is 97%
α =20 and up the covering is 100%

0 20 40 60 80 100 120 140 160
0

200

400

600

800

1000

1200

1400

1600

1800

2000

CoefficientOfVariation=0.5095

Figure 4. The more the coefficient of variation is bigger, the more the filter has to be
wide in boundary limits.

The final result is a set S where

andidatespotentialCRdidatessimilarCanS =⊂= .

Note that, the S set contains segments of length l. tlt
<≤

2
.

Mean luminance feature

0 20 40 60 80 100 120 140 160
0

50

100

150

200

250

300

(b)

0 20 40 60 80 100 120 140 160
200

205

210

215

220

225

(d)

Contrast feature

0 20 40 60 80 100 120 140 160
0

200

400

600

800

1000

1200

1400

1600

1800

2000

(e)

0 20 40 60 80 100 120 140 160
0

200

400

600

800

1000

1200

1400

1600

1800

(g)

Figure 5. Referring to fig.3, only (b) and (d) and (e) and (g) where kept (with many
others) after similarity verification; Here similarity cover threshold was set to 95%
which is not a strict value.

Considering this, for a given feature, couples in S, of length l, are similar. But
one should not forget that, the goal of our similarity search is to find the similar
subsequences despite of their length.

In consequence, potential invariant could have a length of 1 second up to 30
seconds or even more in a video content. That’s why avoiding loosing any precious
information, we preserve all possible similar subsequence for later filtering. Thus,
parameter t must not be fixed and must vary between min and max boundaries.

varyingLength(a,b,tMax,tMin)
{
 % a & b are of similar length

while(length(a)&length(b)> tMax)
 divide a into a1 & a2

divide b into b1 & b2

 for each couple:(x,y) compare(x,y)
}

compare(x,y)
{
 if potentiallySimilar(x,y)
 verifySimilarity(x,y,α)
 else if length>tMin
 divide by two: x1,x2,y1,y2

compare(xi,yj,α), …
}

Algo.3 Varying the length of searched couples.

In our experiments, we have fixed for t a minimal value of one second, i.e. 24
images, and maximal one of 30 seconds, considering that an advertisement can last
this long, and may be considered as invariant.

The above algorithm works on deep down comparison. It continues to compare
until it finds all possible similar segments of different lengths. This time, we will
obtain variable length couples judged similar by the feature in question.

In the next paragraph, we demonstrate how we filter significant couples based
on the combination of multiple features.

2.2. Invariant filtering based on merging criteria

The result of the above algorithm, when applied to one feature, i.e. one time
series, can be viewed as the union of several sets each of which has the form of S
for a certain scale t (Eq. 3).

() () ()
⎭
⎬
⎫

⎩
⎨
⎧ <≤∧==∧≅∧⊂∧⊂= tltlJIJIbJaIJIFS jijijijit 2

lengthlength,,U [3]

Where t varies between the boundaries tMax and tMin of what is considered as a reasonable invariant
size. For example [1s, 30s].

When applying this general algorithm to all the extracted audiovisual features,
we obtain as many sets as the number of features. Certain, the result need to be
filtered. Only pertinent information will be kept. Therefore, it is necessary to
consider the following cases:

– First, in general, one tiny common segment is meaningless unless a large
number of features say the contrary

– in a second hand, a large segment (Ii, Jj), said to be invariant, even with only a
few number of features (it can be one feature) is most probably an production
invariant.

In conclusion, invariants will be filtered relatively to their size and the number
of features agreed on their common or invariant property.

The first intuitive method to combine criteria is to extract all common couples of
equal size from all features. Even here; we obtain results; like the pre-programmed
video sequences that are always inserted in certain programs. Note that, the same
segment, diffused several times, will be highly influenced by the noise and timing
variations which make it not identical any more.

Then, we can proceed to all possible combining methods. We can start by
varying the number of features combined, with or without discrimination, up to
varying the compared size of segments, i.e. comparison by intersection (or
inclusion) of segments and not only by equality. Here, we can vary the reminder rate
and precision rate, regarding to the expected results.

The merging criteria remain a point to explore; some of the results obtained will
be shown in the next section, to give an idea of its high interest.

3. Example

One concrete example for the invariant we were able to extract after combining
the results for each feature, is the generic extraction without previous model in hand
or learning phase. All the features agreed on the invariant property of the generic of
a TV game show because it is automatically sent on the beginning of each
transmission. It means that we succeeded to catch this invariant despite the noise
effects on transmission. In fig. 6, we can see some of the curves (features extracted)
relatives to the generic of TV game program (between the black bars), for two
consecutives days. The generic evolution is quickly shown in fig. 7 (a, b, c and d).

100 200 300 400 500 600
0

50

100

150

200

250

(a)

100 200 300 400 500 600
0

50

100

150

200

250

(b)

Figure 6. The show’s beginning generic features on on two consecutive days.

Also, when we change merging criteria, we find that a large number of features
detect the monotone aspect of the camera movement as it moves between the
animator and participants in a predefined cycle. Although participants change from
day to day, invariants were detected regarding to the way the camera moves in some
specific shots occurring at specific moments of the game. (fig.7e- h)

G
en

er
ic

 d
et

ec
tio

n

(a) (b) (c) (d)

C
am

er
a

m
ov

em
en

t
m

on
ot

on
ic

(e) (f) (g) (h)

Figure 7. Two different combining methods (a,b,c,d) and (e,f,g,h) gives two different
kind of invariants.

4. Conclusions and future works

 We proposed a method for production invariant extraction from video
sequences. The method is based on a hierarchical comparison approach using
morphomathematical filters. Given two audiovisual documents, we used fast search

techniques able to extract all similar subsequences, of different lengths, and this for
each feature characterizing the document.

We have introduced the idea of combining multiple subsequence comparison, of
features extracted from audiovisual documents, in order to filter significant results.
We can develop some strategies in order to robust invariant detection, based on the
length of repeated patterns of values and using other features. This will improve the
potential detection of production invariants.

These invariants will be extracted by the analysis of different programs of a
same collection. Once they are determined after this learning step, they will be
easily detected in any other document of the same kind, or eventually be used to
automatically detect an occurrence of an item of this collection. Since we do not
have any learning sequence in this first part of the work, we do not use any models
to proceed to that kind of detection. But, it already allows us to analyze and to detect
repetitions of some specific parts of any given recurrent programs.

We consider that extracted production invariants from real dimension video
documents (a whole journey of television broadcasting) will form a set of
descriptors we call "Middle Metadata" (MMD). We define the latter as the
Metadata layer situated between Low Level features that are concrete and
numerically meaning relied to information extracted from audiovisual documents,
and Metadata seen as semantic pieces of description adapted to a specific
application or to predefined end-user profiles.

In future works, we will study the interest of the normalization of time series
before processing, in order to transform feature values, and so to be in a situation to
compare these values at any moment along the time series. This will lead us to
further study the dependence between the morphomath filter and the variation of
time series. While studying this filter, we will evaluate the interest of keeping
information about high peaks as shown in fig. 2, and filtering low frequency
variations. Later, in order to improve the robustness of invariant extraction, we will
combine criteria on the base of audiovisual rules.

Acknowledgement

This work has been conducted on the behalf of the KLIMT-ITEA project and in
the PIDOT-CNRS framework.

5. Bibliography

N. Adami, M. Corvaglia and R. Leonardi, "Comparing the quality of multiple descriptions of
multimedia documents", MMSP 2002 Workshop, St. Thomas (US Virgin Islands), Dec.
2002.

R. Argawal, K. Lin, H. Sawhney and K Shim, "Fast Similarity Search in the Presence of
Noise, Scaling and Translation in Time-Series Databases", Proceedings of the 21st VLDB
Conference, Zürich, Switzerland, 1995.

D. J. Berndt and J. Clifford. "Using dynamic time warping to find patterns in time series",
KDD-94: AAAI Workshop on Knowledge Discovery in Databases, Seattle, Washington,
July, 1994.

T. Bozkaya, N. Yazdani and M. Özsoyoglu, "Matching and Indexing Sequences of Different
Lengths", Conference on Information and Knowledge Management, Proceedings of the
sixth international conference on Information and knowledge management, Las Vegas,
USA, 1997.

G. Das, D. Gunopulos, and H. Mannila. "Time-series similarity problems and well-separated
geometric sets", In 13th Annual ACM Symposium on Computational Geometry.
Association for Computing Machinery, 1997.

B. W. Erickson and P. H. Sellers. "Recognition of patterns in genetic sequences”. In D.
Sankoff and J. B. Kruskal, editors, Time Warps, String Edits, and Macromolecules: The
Theory and Practice of Sequence Comparison. Addison. Wesley, MA, 1983.

J-G. Ganascia, "Extraction of syntatical patterns from parsing trees", JADT 2002 : 6es
Journées internationales d’Analyse statistique des Données Textuelles. 2002.

D. Guégan, "Séries chronologiques non linéaires à temps discret", Book, Statistiques
Mathématiques et Probabilité, Economica, 1994.

D. Gunopulos and G. Das, "Time Series Similarity Measures", Sixth ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, Boston, MA, USA,
2000.

A. Guttman, "R-trees: a dynamic index structure for spatial searching", ACM SIGMOD
International Conference on Management of Data, Boston, June, 1984.

E. Keogh and P. Smyth, "A probabilistic approach to fast pattern matching in time series
databases", Proceedings of the 3rd International Conference of Knowledge Discovery and
Data Mining. AAAI Press. 1997.

R. McConnell, "Correlation and dynamic time warping: Two methods for tracking ice floes
in SAR images", IEEE transactions on Geosciences and Remote Sensing, 1991.

J. Pinsach, "Analysis of Video Sequences for Content Description. Table of Content & Index
Creation and Scene Classification", PhD Thesis, University Politècnica de Cataluna,
Barceluna, May, 2003.

H. Sakoe and S. Chiba, "Dynamic programming algorithm optimization for spoken word
recognition", IEEE transactions on Acoustics, Speech and Signal Processing, 1978.

J. Serra, "Outils de morphologie mathématique pour le traitement d’images", Centre de
Morphologie Mathématiques, Ecole des Mines de Paris, Fontainebleau, 2000.

E. W. Weisstein, "CRC Concise Encyclopedia of Mathematics, Second Edition", CRC Press
LLC, Wolfram Research, Inc., 1999-2003.

I. Yahiaoui, "Construction Automatique de Résumes Vidéos", PhD Thesis, Télécom Paris,
October, 2003.

