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RÉSUMÉ. La recherche de l'information non textuelle est un point fondamental dans l'industrie 
audiovisuelle où les besoins d'outils pour manipuler des contenus multimédia sont importants 
et diversifiés. Dans les documents vidéo, l'extraction de signature de style est un procédé 
extrêmement intéressant, puisqu’il fournit une nouvelle caractéristique pour la classification 
de contenus. Les documents vidéo peuvent avoir des caractéristiques et des propriétés très 
différentes. Cependant, on peut identifier des points communs à toutes les émissions 
politiques, ou toutes les retransmissions de matchs de football, ou encore tous les films 
réalisés par un même réalisateur. Ces points communs sont ce que nous appelons “invariants 
de production”. Un invariant de production caractérise un document ou une série de 
documents appartenant à une même "collection", ou tourné par un même réalisateur, ou 
produit suivant les mêmes directives.  
Dans ce papier, nous proposons une transcription formelle de ce que nous appelons "un 
invariant de production" dans un segment vidéo à travers l’étude de l’évolution des 
caractéristiques de bas niveau. Nous proposons un algorithme pour l'extraction de segments 
invariants, applicable sur tout document audiovisuel, indépendamment de la nature des 
caractéristiques, de leur sens, et du type ou de la durée de l’invariant. 
ABSTRACT. Information searching in non-textual media is a fundamental point of interest, 
especially in the audiovisual industry where there is still an important need of tools for 
manipulating multimedia contents. In video documents, the style signature extraction is a 
highly interesting process since it provides a new feature for contents classification. Video 
documents may have very different characteristics and properties. However, we all agree that 
there are some common points between all political programs, or all football matches, or, 
time to time, between all the movies realized by a given director. These common points are 
what we call "invariants". An "invariant of production" characterizes a document or a set of 
documents belonging to a same "collection", of a same director, or produced following the 
same set of guidelines.  
In this paper, we present a hypothetical definition of what we call production invariant in a 
video segment.  We propose an algorithm for the invariant segment extraction, applicable on 
all video features independently with the feature nature and meaning, and with this invariant 
length or type. 
MOTS-CLÉS : indexation audiovisuelle, comparaison de caractéristiques, extraction de 
caractéristiques vidéo. 
KEYWORDS: audiovisual indexing, feature comparison, video feature extraction. 



 

1. Introduction 

Video feature extraction is used for segmenting, classifying and indexing video 
documents. Video content analysis is a first step before applying information 
retrieval and browsing tools in order to satisfy some queries on audiovisual content.  

Many research works were made to extract meaningful information on 
production styles, in order to classify them and to construct robust summaries 
(Yahiaoui, 2003). New description strategies were introduced allowing creating 
ToCs (Tables of Content) and index of a video sequence. (Pinsach, 2003) focuses 
on the semantic characterization of videos sequences in order to enrich the ToC and 
Index structures.  

The use of extracted video feature to find what could be production invariant 
relative to a given set of video document is very important to classifying semantic 
scenes and creating ToCs and Index. An invariant of production, as we define it, is 
what characterizes a document or a set of documents belonging to a same 
"collection", of a same director, or produced following the same set of guidelines. 
Once defined and extracted for a set of audiovisual documents, these invariants are 
useful in various operations concerning documents’ semantic analysis. Since 
invariants characterize video segments, they can be used later to identify or localize 
them. Another benefit we can see in "invariants", is the validation of production 
charts, i.e., a director can use them to follow up the evolution of his realizations and 
see whether or not they do apply his rules and guidelines. 

We consider that these production invariants will appear as the repetition of the 
same sequence of values of different low-level features extracted from two different 
streams or two different parts of a same stream. The size of these schemas may vary, 
and all the extracted features are not necessarily involved in the expression of these 
sequences. It can be for example the iteration of some specific values when the 
anchor frame appears in a TV News program, or at the beginning of a same game 
show broadcasted on two different days. 

To localize and extract a production invariant, we rely on the set of all possible 
features characterizing an audiovisual document (Adami and al., 2002) which can 
be extracted and quantized to build numeric time series. Then we consider the 
invariant search as a segment seen as a common- or a similar- or even as a repetitive 
sequence of values, from the point of view of one or multiple features. 

In this context, we need to determine whether two given features (or more 
exactly their time series) display a similar behavior. The problem is interesting (and 
difficult) because, unlike traditional tools for audiovisual content querying, we do 
not have, a priori, a sample or model of what we are looking for. This means we do 
not know previously what we are searching for, where it could be or even what 
dimension or length it could have. 



 

In this paper, we present a simple algorithm for invariant video content 
identification, based on a two-level approach. It requires neither any previous 
knowledge about the feature’s nature or its behavior, nor user intervention in order 
to define or change thresholds or filters, to produce a result. The algorithm 
automatically accommodates thresholds and filters to feature general properties. 
This permits it to be applied on different types of time series.  

Since we propose a new algorithm for comparing two time series, we quickly 
describe the state-of-art of similarity measures and indexing techniques that have 
been proposed for time series analysis.  

The main idea behind similarity measures is that they should allow imprecise 
matches. There are several applications of such measures. For example, they can be 
used to cluster the different time series into similar groups, or to classify a time 
series based on a set of known examples. Another point of interest is the indexing 
problem which can be formalized as : "given a set of time series Q, prepare an index 
offline such that given a query series q, the time series in Q that are most similar to 
q can be reported quickly" (Gunopulos and al., 2000). All similarity measures 
intend to bypass obstacles, such as, the subsequence similarity problem, the rule 
discovery problem, and clustering problems which have to be overcome in our 
approach. Furthermore, we consider that, as well as accuracy, efficiency (in terms of 
computational cost) is a challenging issue. 

Euclidean Similarity Measure views each sequence as a point in n-dimensional 
Euclidean space (n=length of sequence) and defines the similarity measure between 
X and Y as Lp(X,Y). Although it is very easy to compute, it does allow neither 
noise nor short-term fluctuations, nor temporal shifts. Measures based on 
transformation rules, like for example moving average is a well known technique 
for smoothening time sequences. Combined with Euclidean distance, it intuitively 
produces similarity results but does not fit our requirements. For example, it does 
not preserve relevant and meaningful peaks, like the ones we can observe in the 
evolution of action/motion features.  

Dynamic time-warping based matching is another popular technique in the 
context of speech processing (Sakoe and al., 1978), sequence comparison (Erickson 
and al., 2002), and shape matching (McConnell, 1991). This method has been used 
in (Guttman, 1984) to match a given pattern in time-series data. The essential idea is 
to match one dimensional pattern while allowing for local stretching of the time 
parameterization (Brendt and al., 1994). It is a robust measure that allows non-
matching gaps, amplitude scaling, and offset translation.  

Longest Common Subsequence Measures: based on the edit distance (Bozkaya 
and al., 1997), (Ganascia, 2002) works on sequences with slightly different length. 
It considers two sequences to be similar if they have enough non-overlapping time-
ordered pairs of subsequences that are similar. The algorithm consists of finding all 
atomic similar subsequence pairs, which is achieved by a spatial self-join over the 
sets of all atomic windows. Edit distance is also used for approximate text matching, 



 

based on dynamic programming. Some methods are inspired from algorithms for 
fast text searching (Argawal and al., 1995), (Ganascia, 2002), like finding text 
subsequence that approximately matches a given string. Text sequences normally 
consist of a few discrete symbols as opposed to continuous numbers that makes the 
similarity measures and the search methods quite different.  

2. Multi-level analysis coupling using morpho-math filters 

All the similarity measures proposed in the domain of time series do not intend 
to merge the result of multiple comparisons. They are supposed to be applied on one 
type of time series at a time. Thus, parameterization issue is not a problem for them; 
it can be fixed once on the beginning of the processing depending on the type of 
studied time series. In our case, a production invariant is identified after combining 
all studied features results.  

As we will show, features extracted from an audiovisual document do not have a 
comparable evolution.  
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Figure 1. The mean luminance feature smoothness (a) relative to the eventful color 
contrast feature (b). Both are extracted from the same audiovisual segment. 

For example, we have defined a measure of the color contrast which is obtained 
here by iteratively measuring the distance between the two main dominant colors, 
given by the following formula: 
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Where L1, L2 are respectively the luminance of the two dominant colors, H1,H2 the hue, and S1, S2 the 
saturation, and where district(x,y) is the circular distance between x and y, knowing that x and y vary 
inside certain boundaries 

This feature is very noisy and eventful (Fig.1.a), and presents many peaks. On 
the contrary, a feature with a very different behavior is the mean luminance, which 
calculates the average of pixels' luminance in each frame, is very smooth and calm.  



 

As it appears in fig.1, no normalization was applied on features, because until 
now, all treatments applied are relative to each feature and so there is no meaning of 
a scale comparison.  

Considering this fact, no feature nature discrimination is allowed; the 
comparison algorithm is applied uniformly on all the time series, despite their 
smoothness. However, we accommodate the processing by varying the thresholds 
relatively to each sequence property. 
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Figure 2. Meaningful peaks in the quantity of movement feature; they announce 
scene change. They are either sudden peaks designating a cut transition, or 
progressive when occurs a cross-dissolve. 

Also, we allow no smoothing considering that peaks carry important information 
related with an event happening during the video, like a lightning effect or a sudden 
movement or even a view or a scene change (see fig.2 for example). At the matter of 
fact, only a few peaks may be due to noise. 

For this reason, we proposed a new algorithm, able to set automatically its 
parameters, to conform features special properties. 

2.1. Matching process 

Our sequence matching method, like most of the matching methods, in an 
environment with a large set of data sequences, works in two phases. In the first 
phase, only a finite number of data sequences are kept after a filtering process. We 
consider that these sequences are matching candidates. In the second phase, all 
candidate sequences are verified for the actual matching using a morphomath 
comparison filter.  

Before generalizing and giving a definition for matching sequences in scientific 
experiments, we would like to address the following points for motivation:  



 

- The relative times that the corresponding samples are taken are almost the 
same in both sequences. This means that lengths of sequences to be 
matched should be close to each other.   

- Two sequences can be considered as matching (or similar) if the majority 
of their segments elements match. 

Definition 2.1 Matching sequences: Two subsequences of length l are considered to 
be similar if their similarity covering measure bypasses a certain threshold. 

Definition 2.2 Covering: The covering is the percentage of sub sequences touched 
by the morphomath coupling process. It is given by the following formula;  

( )
essubsequencnbtotal
essubsequenccouplednbJIcover ji __

_),( =  [2] 

Where nb(coupled_subsequences) is the number of subsequences coupled a least once in the process of 
similarity comparison 

The choice of the similarity threshold covering depends on the accuracy 
requested for the similarity measure. 

The algorithm proceeds in a dichotomous approach in order to avoid useless 
comparisons. No continuation in depth is made unless suspected resemblance is 
possible. We introduce here an algorithm that we call the Recursive Quadratic 
Intersection (Algo.1). 

RQI(a,b,t) 
{ 
 % a & b are of similar length 

% t is the desired length of candidates 

if [min(a),max(a)]∩[min(b),max(b)]≠Ø  
 if length(a)>=t & length(b)>=t 
 divide equally a into a1 and a2 

divide equally b into b1 and b2 

RQI(a1,b1,t) 

RQI(a2,b1,t) 

RQI(a1,b2,t) 

RQI(a2,b2,t) 
 else add (a,b) to potentialCandidates 
 return potentialCandidates 
} 

Algo.1 The extraction of potential candidates for resemblance from two sequences of 
similar length. 

The result is a set of candidate intervals all of which have the requested length l 
so that: tlt

<≤
2
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Contrast feature  

0 20 40 60 80 100 120 140 160
0

200

400

600

800

1000

1200

1400

1600

1800

2000

 
(e) 

0 20 40 60 80 100 120 140 160
400

600

800

1000

1200

1400

1600

 
(f) 

0 20 40 60 80 100 120 140 160
0

200

400

600

800

1000

1200

1400

1600

1800

 
(g) 

0 20 40 60 80 100 120 140 160
0

200

400

600

800

1000

1200

1400

1600

1800

2000

 
(h) 

Figure 3. Extraction of hypothesized candidates found by applying the algorithm 
using two different features, for t=20 s environ. 

Once potential candidates are filtered, given two sequences, we shall proceed to 
the resemblance verification by applying the morphological multi-scale comparison 
using a structuring element of size α to each couple (Ii,Jj). The value of α is 
determined on the base of the feature variation. (Algo. 2) 



 

verifySimilarity(Ii,Jj,α){ 

{ 

 % Ii &Jj are of similar length 

% α is the morphomath filter 

if covering(Ii,Jj,α)> P % similarity threshold  

 add (Ii,Jj) to similarCandidates 

 return similarCandidates 

} 

coveringCalculation(Ii,Jj,α) 

{ 

 if length(Ii)&length(Jj)< α& [e(Ii),d(Ii)]∩[e(Jj),d(Jj)]≠Ø 

 CountOccurrence if first time coupled 

 else  

 divide Ii into Ii1 & Ii2 

divide Jj into Jj1 & Jj2 

for each couple:  

if [e(Iii),d(Iii)]∩[e(Jjj),d(Jjj)]≠Ø  

 coveringCalculation(Iii,Jjj,α) 

 At the end compute as shown in equation [2] 

} 

Algo.2 Similarity verification using morphomath filter (structuring element) which 
length is adapted to the sequences coefficient of variation. 

 Here we used e(x) and d(x) to designate, respectively, the morphomathematical 
erosion and dilation of a sequence x, computed in a one-dimensional space, with the 
filter size α. In our experiments, we used the minimum and maximum, as classical 
erosion and dilation.  

The reason we have chosen the morphomathematical operators in subsequences 
comparison is that these operators perform fast and are well adapted to handle value 
fluctuation and imprecision inside a segment of filter size at the same time.  

The filter α is chosen relatively for each sequence (feature), based on the 
following reasoning. The more the sequence presents variations in its evolution, the 
bigger will be α in order to allow matching of two sequences. In the contrary, the 
smoother is the shape of curves; the more precise we have to be in comparing final 
sequences, thus the smaller the morphomath filter will be. 

The filter depends of the variations of the time series, which is defined as 
follows. If Sx is the standard deviation of a set of samples xi and m its mean, then 
V=Sx/m, (Weisstein, 1999). So, α=f(V).  

This means the morphomath filter is related to the coefficient of variation. This 
work hypothesis is to be validated by further works and experiments. For the time 
being, the relation between those two observed parameters is still empirical. The 
threshold varies between two boundaries, which assert our hypothesis. 
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α =2 the covering is 90% 
α =4  the covering is 91% 
α =6  the covering is 95% 
α =12  the covering is 97% 
α =20 and up  the covering is 100% 
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Figure 4. The more the coefficient of variation is bigger, the more the filter has to be 
wide in boundary limits. 

The final result is a set S where 

andidatespotentialCRdidatessimilarCanS =⊂= .  

Note that, the S set contains segments of length l. tlt
<≤

2
. 
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Contrast feature 
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Figure 5. Referring to fig.3, only (b) and (d) and (e) and (g) where kept (with many 
others) after similarity verification; Here similarity cover threshold was set to 95% 
which is not a strict value. 



 

Considering this, for a given feature, couples in S, of length l, are similar. But 
one should not forget that, the goal of our similarity search is to find the similar 
subsequences despite of their length.  

In consequence, potential invariant could have a length of 1 second up to 30 
seconds or even more in a video content. That’s why avoiding loosing any precious 
information, we preserve all possible similar subsequence for later filtering. Thus, 
parameter t must not be fixed and must vary between min and max boundaries. 

 

varyingLength(a,b,tMax,tMin) 
{ 
 % a & b are of similar length 

while(length(a)&length(b)> tMax)  
 divide a into a1 & a2

divide b into b1 & b2

 for each couple:(x,y) compare(x,y) 
} 
 

compare(x,y) 
{ 
 if potentiallySimilar(x,y) 
 verifySimilarity(x,y,α) 
 else if length>tMin 
 divide by two: x1,x2,y1,y2

compare(xi,yj,α), … 
} 

Algo.3 Varying the length of searched couples. 

In our experiments, we have fixed for t a minimal value of one second, i.e. 24 
images, and maximal one of 30 seconds, considering that an advertisement can last 
this long, and may be considered as invariant. 

The above algorithm works on deep down comparison. It continues to compare 
until it finds all possible similar segments of different lengths. This time, we will 
obtain variable length couples judged similar by the feature in question.  

In the next paragraph, we demonstrate how we filter significant couples based 
on the combination of multiple features. 

2.2. Invariant filtering based on merging criteria 

The result of the above algorithm, when applied to one feature, i.e. one time 
series, can be viewed as the union of several sets each of which has the form of S 
for a certain scale t (Eq. 3).  
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Where t varies between the boundaries tMax and tMin of what is considered as a reasonable invariant 
size. For example [1s, 30s]. 

When applying this general algorithm to all the extracted audiovisual features, 
we obtain as many sets as the number of features. Certain, the result need to be 
filtered. Only pertinent information will be kept. Therefore, it is necessary to 
consider the following cases: 

– First, in general, one tiny common segment is meaningless unless a large 
number of features say the contrary 

– in a second hand, a large segment (Ii, Jj), said to be invariant, even with only a 
few number of features (it can be one feature) is most probably an production 
invariant.   

In conclusion, invariants will be filtered relatively to their size and the number 
of features agreed on their common or invariant property. 

The first intuitive method to combine criteria is to extract all common couples of 
equal size from all features. Even here; we obtain results; like the pre-programmed 
video sequences that are always inserted in certain programs. Note that, the same 
segment, diffused several times, will be highly influenced by the noise and timing 
variations which make it not identical any more. 

Then, we can proceed to all possible combining methods. We can start by 
varying the number of features combined, with or without discrimination, up to 
varying the compared size of segments, i.e. comparison by intersection (or 
inclusion) of segments and not only by equality. Here, we can vary the reminder rate 
and precision rate, regarding to the expected results.  

The merging criteria remain a point to explore; some of the results obtained will 
be shown in the next section, to give an idea of its high interest. 

3. Example  

One concrete example for the invariant we were able to extract after combining 
the results for each feature, is the generic extraction without previous model in hand 
or learning phase. All the features agreed on the invariant property of the generic of 
a TV game show because it is automatically sent on the beginning of each 
transmission. It means that we succeeded to catch this invariant despite the noise 
effects on transmission.  In fig. 6, we can see some of the curves (features extracted) 
relatives to the generic of TV game program (between the black bars), for two 
consecutives days. The generic evolution is quickly shown in fig. 7 (a, b, c and d). 



 

 

100 200 300 400 500 600
0

50

100

150

200

250

 
(a) 

100 200 300 400 500 600
0

50

100

150

200

250

 
(b) 

Figure 6. The show’s beginning generic features on on two consecutive days. 

Also, when we change merging criteria, we find that a large number of features 
detect the monotone aspect of the camera movement as it moves between the 
animator and participants in a predefined cycle. Although participants change from 
day to day, invariants were detected regarding to the way the camera moves in some 
specific shots occurring at specific moments of the game. (fig.7e- h) 
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Figure 7. Two different combining methods (a,b,c,d) and (e,f,g,h) gives two different 
kind of invariants. 

4. Conclusions and future works 

 We proposed a method for production invariant extraction from video 
sequences. The method is based on a hierarchical comparison approach using 
morphomathematical filters. Given two audiovisual documents, we used fast search 



 

techniques able to extract all similar subsequences, of different lengths, and this for 
each feature characterizing the document.  

We have introduced the idea of combining multiple subsequence comparison, of 
features extracted from audiovisual documents, in order to filter significant results. 
We can develop some strategies in order to robust invariant detection, based on the 
length of repeated patterns of values and using other features. This will improve the 
potential detection of production invariants.  

These invariants will be extracted by the analysis of different programs of a 
same collection. Once they are determined after this learning step, they will be 
easily detected in any other document of the same kind, or eventually be used to 
automatically detect an occurrence of an item of this collection. Since we do not 
have any learning sequence in this first part of the work, we do not use any models 
to proceed to that kind of detection. But, it already allows us to analyze and to detect 
repetitions of some specific parts of any given recurrent programs.  

We consider that extracted production invariants from real dimension video 
documents (a whole journey of television broadcasting) will form a set of 
descriptors  we call "Middle Metadata" (MMD). We define the latter as the 
Metadata layer situated between Low Level features that are concrete and 
numerically meaning relied to information extracted from audiovisual documents, 
and Metadata seen as semantic pieces of description adapted to a specific 
application or to predefined end-user profiles.  

In future works, we will study the interest of the normalization of time series 
before processing, in order to transform feature values, and so to be in a situation to 
compare these values at any moment along the time series. This will lead us to 
further study the dependence between the morphomath filter and the variation of 
time series. While studying this filter, we will evaluate the interest of keeping 
information about high peaks as shown in fig. 2, and filtering low frequency 
variations. Later, in order to improve the robustness of invariant extraction, we will 
combine criteria on the base of audiovisual rules. 
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