Learning to Extract Answersin
Question Answering: Experimental Studies

Florent Jousse, Isabelle Tellier, Marc Tommasi and Patrick Marty?

Grappa Lab Lille 3 University and INRIA Futurs, Lille, Mostrare Project?

ABSTRACT. Question Answering (QA) systems are complex programs able to answer a question
in natural language. Their source of information is a given corpus or, as assumed here, the
Web. To achieve their goal, these systems perform various subtasks among which the last one,
called answer extraction, is very similar to an Information Extraction task. The main objective
of this study it to adapt machine learning techniques defined for Information Extraction tasks
to the slightly different task of answer extraction in QA systems. The specificities of QA sys-
tems are identified and exploited in this adaptation. Three algorithms, assuming an increasing
abstraction of natural language texts, are tested and compared.

RESUME. Les systemes Question/Réponse sont des programmes complexes capables de répondre
a une question en langage naturel, en utilisant comme source d’information soit un corpus
donné, soit, comme c’est le cas ici, le Web. Pour cela, ces systémes réalisent différentes sous-
taches parmi lesquelles la derniére, appelée extraction de la réponse, est tres similaire a une
tache d’Extraction d’Information. L’objectif de cet article est d’adapter les techniques d’ap-
prentissage automatique utilisées en Extraction d’Information a I’extraction de la réponse. Les
spécificités des systemes Question/Réponse sont identifiées et utilisées dans cette adaptation.
Trois algorithmes utilisant une abstraction croissante du texte sont testés et comparés.

KEYWORDS: Question Answering, Machine Learning, Information Extraction
MOTS-CLES : Systémes Question-Réponse, Extraction d’information, Apprentissage automatique

1. This research was partially supported by: “CPER 2000-2006, Contrat de Plan état - région
Nord/Pas-de-Calais: axe TACT, projet TIC”; fonds européens FEDER “TIC - Fouille Intelli-
gente de données - Traitement Intelligent des Connaissance” OBJ 2-phasing out - 2001/3 - 4.1
-n3.

2. www.grappa.univ-lille3.fr

1. Introduction

Question answering (QA) systems are complex systems that, given a question
asked in natural language, can find an answer to this question, in a corpus or in the
Web, and justify it by quoting their source(s). From the user’s point of view, they
can be considered as an improvement over traditional search engines such as Google
or AltaVista because they provide a more direct and precise access to the desired
information. The counterpart is that finding the correct answer to a question requires
much more analysis and processing than a typical search engine.

Traditionally, a QA system is divided into three steps: question analysis, passage
retrieval and answer extraction. Our focus will be on the last task (answer extrac-
tion) which can be compared with an Information Extraction (/E) task. The purpose
of IE is to automatically fill a database from a corpus of texts in natural language
or semi-structured data from the Web. [E is an active research area in which many
improvements have been made recently. Among them, we are particularly interested
in machine learning techniques and techniques that deal with internet data sources
[SOD 99, KUS 02, CAR 04].

Our objective is to improve the answer extraction task in QA systems on the Web
by using insights provided by recent machine learning techniques developed for /E.
Some specificities of QA systems can be useful here. As a matter of fact, in QA
systems, the first steps of the process give hints that can help the answer extraction.
Unlike in /E, we can take advantage of the outcomes of these steps. We focus our
study on using common outcomes of the question analysis step: the class of the ques-
tion and the keyword(s). To summarize, in this paper, we experimentally study how
to use machine learning techniques developed for /E in answer extraction, taking into
account QA systems specificities. We propose several ways to adapt existing /E algo-
rithms, mainly differing by the document representation they adopt.

We have built a dataset to evaluate and analyze several alternatives. This dataset
if freely available on http://www.grappa.univ-1ille3.fr/~jousse. Our ex-
periments deal with various encodings and three machine learning algorithms. The
first algorithm, suggested by [RAV 02], applies on raw text. It relies on a document
representation that is a sequence of token values (a token is either a word or a punc-
tuation symbol) and builds extraction patterns by searching for the largest common
subsequences of tokens present around the answer. RAPIER, defined by [CAL 98], is
the second tested algorithm. It exploits deeper information about the documents, in-
cluding part of speech (POS) tags, and elaborates complex extraction rules using both
token values and POS tags. The third one is PAF developed in the Mostrare group
[MAR 04]. PAF relies on supervised classification and is very flexible from the docu-
ment representation point of view. In our experiments with PAF, token values are not
used but only token types (POS tag, punctuation, case,...) and simple numerical fea-
tures computable from the texts (lengths, etc.). These three algorithms are worth being
compared because they make very different assumptions on how to represent a text in

natural language. The representations used correspond to three levels of abstraction.
For each algorithm, we also study the influence of using the keyword information.

The next section in an overview of QA systems. We present our experiments and
our analysis in Section 3.

2. Overview of Question Answering Systems

Although the first works in this research field go back to the 1960s and 1970s
with the works of [GRE 61], [WOO 73] and [LEH 78], Question Answering systems
became popular in the late 1990s. This emergence was encouraged by the TREC-8
conference in 1999, where a QA track [VOO 99] was initiated and where the first
large-scale evaluation of such systems took place. This evaluation led to a consen-
sus on the general architecture of a QA system. Now, every QA system performs
three successive tasks: question analysis, information retrieval and answer extraction.
Although we will mainly focus on the third one, we introduce each of them and the
assumptions made at each step, to justify our own choices. We also briefly review
previous attempts to introduce machine learning techniques in QA systems.

2.1. Question Analysis

First, an analysis of the question is performed, its goal being to extract the infor-
mation needed to perform the next two steps from the question. In all systems, the
result is at least a classification of the question into a class. The set of possible classes
is predefined, and ranges from few basic sets only depending on the first word of the

question (“where”, “when”, etc.) to very fine sets of hierarchical classes.

But this information alone is not precise enough to directly allow to answer the
question. So, another goal of this task is usually to extract words giving crucial in-
formation about the subject of the question. The notion of “focus” is often employed.
Instead, we use the term keywords. A keyword is a word or a sequence of words.
The number of keywords to be extracted from a question depends on its class. For
example, in the question “When was W.A. Mozart born?”, the question class can be
BIRTHYEAR and the only keyword needed is “W.A. Mozart”. So, the class BIRTHYEAR
is of arity 1, meaning that only one keyword must be given with the class to specify a
unique answer. This very precise class BIRTHYEAR could easily be replaced by a less
precise one, for example YEAR, but with two keywords: “W.A. Mozart” and “born”.

In the following, the assumption is made that the couple (question class, keywords)
is a synthetic representation of the question and that this representation is necessary
and sufficient to correctly answer the question. Some systems keep more precise a
track of the initial question, such as AskMSR [BRI 02], including syntactic features.
We do not pretend that a syntactic analysis is useless, for example to distinguish “Who
killed Lee Harvey Oswald?” from “Who did Lee Harvey Oswald kill?”. But the
difference between both sentences can be reflected in different class assignments. The

first question’s representation could be (NAME-KILLER, Lee Harvey Oswald) while the
second one’s could be (NAME-KILL, Lee Harvey Oswald). These couples (question
class, keywords) are the essential QA -specific data that will be used to perform the
next steps.

2.2. Information Retrieval

Then, QA systems perform an Information Retrieval task whose objective is to
build a limited corpus of relevant documents, i.e. portions of texts in which the answer
is very likely to be found. The purpose of this step is to reduce the search space of
the next step. Selected passages must be long enough to contain the answer and some
useful context. But when using the Web as a corpus, which is the case here, it is
impossible to apply NL Ptechniques on the corpus beforehand. Therefore, the selected
passages should not be too long, to be able to perform various NLP techniques such
as POS tagging without dramatically increasing processing time.

2.3. Answer Extraction

Finally, the last task to be performed is the extraction of all candidate answers from
the set of extracted passages. Due to the difficulty of the whole QA task, the candidate
answers are then ranked to get the top 5 answers. This task is very similar to the one of
Information Extraction, which consists in filling a database (whose structure is known)
from natural language texts. In answer extraction, the answer can be considered as the
unique piece of data to be extracted, and the question class represents its type.

Document representation plays a critical role in Information Extraction, hence also
in answer extraction. Texts are usually considered as sequences of tokens, a token
being either a word or a punctuation symbol. POS tags are often added to each token,
and sometimes even syntactic structures are taken into account [LIG 04]. External
resources like named entity recognizers or semantic information (such as Wordnet)
can also be exploited [POI 03]. In our study, only POS tags and simple numerical
descriptions computable from the texts (length, number of occurrences, etc.) will be
used, in order to have a reasonable computation time.

An important question to consider is the representation of the keyword itself inside
the passage. It is intuitively efficient to abstract it, that is to forget its value and
replace it by either a type or a description that indicates “a part of text that contains
the keyword”. For example, in the question “When was Mozart born?”, the question
keyword is “Mozart”. Abstracting it by a tag “(KEYWORD)” in documents allows to
generate extraction rules like “(KEYWORD) was born in (ANSWER)” rather than “Mozart
was born in (ANSWER)”. This seems much better because it is more generic, as it is
correct for the other questions of the same class. One of our purposes is to test the
efficiency of this abstraction.

The extraction itself is usually performed by hand-made patterns which describe
the possible contexts in which the answer can occur. A set of patterns is associated
with every question class. And, of course, the patterns themselves often include the
abstracted keyword.

But the extraction cannot always be described in terms of patterns. One of the
technigues we use is based on decision trees. Similarly, some question answering sys-
tems, such as Javelin [NYB 03], choose among different approaches (SVM, statistical
extraction, patterns, etc.) depending on the question class in order to maximize their
system’s performances.

Finally, to rank the candidate answers, a confidence score is calculated. The score
of a candidate answer can rely on its frequency, on its type (using a named entity
tagger), as in [ABN 00]. This score can also rely on the proximity of the keyword(s),
but this won’t be the case in the following.

2.4. Machine Learning and QA systems

It is only recently that several attempts to introduce machine learning techniques
to help process some of the tasks of a QA system have appeared. The advantages of
introducing such techniques are obvious. The building of hand-made patterns used in
question analysis and answer extraction tasks is long and fastidious. Learning them
automatically would certainly be easier. Furthermore, employing learning techniques
is the best way to automatically adapt a QA system to some specificities, such as the
language used (hand-made patterns are language-specific) and the domain of special-
ity (some patterns may also be specific to a domain) for specialized corpora.

Most of previous works trying to combine machine learning and QA focused on
the first steps, for example on learning to automatically classify a question, or learn-
ing to locate and expand the keywords in the question in order to generate queries
[USU 04]. To our knowledge, the first attempt to learn answer extraction patterns was
the one of [RAV 02], using alignment learning with suffix trees.

But, we have seen that the answer extraction task shares many features with the I1E
task. In this domain, several machine learning techniques have been proposed. Our
purpose is to adapt some of them to answer extraction, and to analyze their efficiency
in this context.

3. Experiments

The main objective of this section is to use /E learning algorithms for answer ex-
traction, and to evaluate the interest of using the keyword in those algorithms to make
them more QA oriented. We will use three radically different /E learning algorithms.
To evaluate the performances of the extraction rules learnt for each question class by
these algorithms, we build a data set from documents provided by Google. We adapt

the protocol proposed by [RAV 02] by making clearer the evaluation protocol, intro-
ducing QA cross-checking, in the spirit of standard machine learning cross validation.

3.1. Building the corpus

As we did not develop a complete QA system, the question analysis step is not
implemented but only simulated. The experiments we make are based on only two
predefined classes: BIRTHYEAR and LOCATION, both of arity 1. The inputs of our
programs are thus couples (question class, keyword), which are supposed to correctly
represent the initial questions. BIRTHYEAR is supposedly an easy question class be-
cause of its very specific aspect, whereas LOCATION is considered more difficult, since
it includes localisation of towns, sites, lakes, etc.

For each class, we choose 100 distinct keywords. Each keyword is associated with
a list of all its valid answers, called Answers. For example, the question (LOCATION
, “Danube”) has several valid answers, such as "Hungary", "Austria", etc.

Algorithm 1 Building the Learning Corpus for a Given Question Class

Input : the set S of (keyword, Answers) couples.

1: Corpus = {

2: for each couple (keyword, Answers) in S do

3: Documents = top 100 documents retrieved by Google containing both

keyword and at least one answer € Answers

4. for each document in Documents do

5 for each answer in Answers do

6 Let s be the smallest passage containing both keyword and answer
7: Let so be s with surrounding context (50 characters) from document
8
9

tokenize(sz)
Add s, to Corpus

10: end for
11: end for
12: end for

Output : Corpus

To build the learning corpus, we adapt the method proposed in [RAV 02]. We first
build a corpus of HTML documents containing both the keyword and at least one of
the valid answers. These are obtained by sending Google a query consisting of the
keyword and a disjunction of all the valid answers. For example, with the keyword
"Great Pyramid" and the answers "Giza" and "Egypt", the query sent to Google is “
"Great Pyramid’ "Giza’ OR ’Egypt’ ”. Query expansion techniques, based on both
the keyword(s) and the class of the question, are often used at this step to increase the
recall, but we do not use any of them here.

Then, inside these HTML documents, all HTML tags are removed in order to only
keep natural language texts. The smallest passages containing both the keyword and

a valid answer are selected, leaving some context (50 characters) before and after
this passage. For example, if the text is “the great composer Ludwig Von Beethoven
was born in 1770 in Bonn, Germany.”, the selected passage is something like “great
composer Ludwig Von Beethoven was bornin 1770 in Bonn” (the context is in italics).

The next step consists in tokenizing these passages to match our document rep-
resentation. A document is considered as a sequence of tokens. As already stated, a
token is either a word or a punctuation symbol. Spaces, tabulations, line feed, etc. are
not considered as tokens but as token delimiters and hence are not taken into account.

The opportunity to realize abstraction of the keyword as presented in Section 2.3
leads us to build two versions of each corpus. Finally, document preparation as well
as the way to use the keyword differ with the choice of the learning algorithm.

3.2. Evaluation protocol: QA cross-checking

In order to evaluate the performance of the rules learnt by each tested algorithm,
with or without using the keyword, we define a new evaluation protocol, inspired by
machine learning cross-validation, and independent of the learning algorithm.

Because of the way we built the learning corpus, it is mandatory to build a new
separate testing corpus. Indeed, if we separated the corpus built as described in the
previous section into two distinct parts, a learning corpus and a testing corpus, a typ-
ical cross validation technique could be applied. But this corpus is exclusively made
of passages containing both the keyword and a valid answer. So, the results obtained
would necessarily differ from the ones obtained in a real QA process, where the pas-
sages extracted in the information retrieval step are selected without knowing the an-
swer, and hence contain the keyword but not necessarily a valid answer. To avoid this
cheat, a new testing corpus must be built.

Building the testing corpus is quite similar to building the learning corpus. We
only change two aspects of algorithm 1. First, for each question, we send Google a
query consisting of the keyword alone. Second, the keyword is used to retrieve small
passages. In each document, the selected passages are fixed-sized windows around
all the occurrences of the keyword. The window size is clearly a parameter to adjust.
Roughly, larger is the window, better is the recall but worst is the precision. We have
made experiments with several window sizes that confirm this intuition. The results
presented here are for a window size of 200 characters before and after the keyword.

Finally, the complete evaluation protocol is given in algorithm 2. We have two
corpora, the learning corpus L and the testing corpus 7', built from a set .S of 100
(keyword,Answers) couples ¢ to cgg. In both corpora, each passage is associated
to a couple. Hence, each corpus is divided into 10 parts: [to lg for the learning
corpus, and ¢ to tg for the testing corpus, each part ¢ containing passages associated
to 10 couples c1g; t0 c10449. This way we build a partition of our corpora. Then 10
iterations are performed. In each iteration 4, extraction rules are learnt on L \ [;, and

Algorithm 2 QA Cross-Checking for a Given Question Class

Input : S = {c;|j € [0,99]}, the set of keyword/Answers couples.
L, the learning corpus.
T, the testing corpus.
1: Build the partition of L = {I;|¢ € [0,9]}, where [; is the set of passages of L
corresponding to the keyword/Answers couples c1o; 10 ¢10i+9
2: Build the partition of T = {¢;]i € [0,9]}, where ¢; is the set of passages of T
corresponding to the keyword/Answers couples ¢1¢; 10 ¢c10i+9
for 4 from 0 to 9 do
Rules = Learn(L \ [;).
for each ¢; represented in ¢; do
Apply Rules on the passages of ¢; corresponding to c;.
Rank the extracted candidate answers.
RR; = Reciprocal Rank of the correct answer.
9: end for
10: end for
Output : M RR = Mean of the RR;

NSO ®

tested on ¢;. This way, each passage of the testing corpus is tested only once and rules
are never evaluated on the questions they have been learnt with.

Finally, to evaluate the performances of the extraction rules, we use a metric
called Mean Reciprocal Rank (MRR), which is the one used in the TREC QA track
[VOO 99]. For each question, the score is the Reciprocal Rank (RR) of the correct
answer, meaning that if the correct answer ranks 27¢, the score is % The MRR is the
mean of these scores. To evaluate whether an extracted answer is correct, we perform
an “exact match” evaluation, i.e. an extracted answer is considered correct if it is iden-
tical to the correct answer. For example, if the expected answer is "Paris", "paris" will
be considered as correct, but "in Paris™ will not. Moreover, for each question, only the
best ranked correct answer counts. For example, if the expected correct answers are
"Paris" or "France", and the system has extracted "Paris", "Lille" and "France", the
correct extracted answer "France" won’t count since "Paris" has also been extracted
and ranked higher.

3.2.1. Statistics

Table 1 shows statistics on our learning and testing corpora. Every passage of the
learning corpus contains both the keyword and at least one correct answer, whereas
every passage of the testing corpus contains the keyword and hopefully the answer, but
it is not compulsory. In each iteration of our evaluation with BIRTHYEAR questions,
we learn on approximately 1900 annotated passages and test on approximately 2900
passages, while with LOCATION questions, we learn on 3000 annotated passages and
test on 2000 passages.

We can also notice that only 93 LOCATION questions have at least one correspond-
ing passage in the testing corpus containing the correct answer. Therefore, 7 questions
will not be answered in the answer extraction step.

| [[BIRTHYEAR | LOCATION |

Learning Corpus # passages 2096 3374
passages 29068 20727
Testing Corpus # passages with answer 1770 5546
Questions having at least
one passage with a correct answer 100/100 93/100

Table 1. Corpora Statistics

Now that we have described the building of our corpora and our evaluation proto-
col, we start our experiments with three different Information Extraction algorithms.

3.3. Experiments with Alignment Learning using Suffix Trees

3.3.1. Learning Algorithm

The first algorithm exploits a simple representation of documents as a sequence
of token values. The underlying principles of the algorithm are also easy. It consists
in building rules based on frequent subsequences around the answer. This approach
is used in [RAV 02]. The answer is replaced by the tag (ANSWER) in order to be able
to locate regularities around it. Building the suffix tree of all the passages in the
learning corpus allows to find these frequent subsequences in linear time. Only the
subsequences of tokens containing the tag (ANSWER), occuring in at least 5 passages,
and containing at least 3 tokens (to avoid learning patterns that are too general, such as
the pattern “(ANSWER)”), are kept. These subsequences form a set of patterns, which
must then be ranked to build extraction rules. To do so, we measure the patterns
precision by applying them one by one to the passages we learnt them with. The
precision of a pattern is the ratio between the number of correct extractions and the
total number of extractions. Patterns are ranked from the more precise to the least
precise. The pseudo-code of this algorithm is given in Fig 3.

Algorithm 3 Alignment Learning Algorithm
Input : List of passages.
1: Search for subsequences occurring in multiple passages.
2: Patterns are the subsequences containing the answer and at least 3 tokens long.
3. Compute the confidence score of the Patterns, i.e. their precision.
4: Sort the Patterns according to their confidence score.
Output : Ordered list of patterns along with their confidence score.

To take advantage of the keyword in this algorithm, we use the method introduced
by [RAV 02], which differs from the algorithm in Fig 3 on two points. First, the key-
word is abstracted. It is replaced by the tag (KEYWORD) in the corpus and only frequent
subsequences containing both the tags (KEYWORD) and (ANSWER) are kept. The second
difference concerns the pattern ranking. Instead of measuring the precision on the
learning corpus, we measure it on the corresponding part of the testing corpus. This
means the precision is measured on passages associated with the same questions as
the learning corpus, but containing the keyword and not necessarily the answer (c.f.
3.1). These two changes make the algorithm more adapted to a QA system.

3.3.2. Extraction algorithm

Both with and without using the keyword, once the rules have been applied on the
documents, we have a list of all the occurrences of the candidate answers along with
their confidence score, which is the precision of the pattern which extracted it. To rank
these candidate answers, we compute a score for each candidate answer which is the
sum of the confidence scores of all the occurrences of this candidate answer, as shown
in Fig 4. For example, if the candidate answer “1756” has been extracted twice with
the score 0.5 and 0.3, the score of “1756” is 0.8.

Algorithm 4 Ranking Algorithm
Input : List of answers along with their confidence score.
1: for each (answer, con fidence) do
2: add con fidence to scoregnswer
3: end for
4: Sort the answers according to scoreqpnswer
Output : Ordered list of the candidate answers.

3.3.3. DataSet Pre-processing

In each passage of our learning corpus, the answer was replaced by the tag (ANSWER)
for both experiments with and without using the keyword information. When using it,
we also replaced it by the tag (KEYWORD) in both our learning and testing corpora.

3.3.4. Results

Table 2 shows the results of our experiments. With both question classes, our
results when using the keyword are not as good as those in [RAV 02] but the experi-
mental conditions (corpora, protocols) are too different to allow a reliable comparison.

One can notice that with both question classes, the rules learnt using the keyword
perform better. With LOCATION questions, the MRR is almost three times better, and
the system correctly answers 23 more questions than when the keyword is not used.
With BIRTHYEAR questions, the difference is less significative. Indeed, the MRR is
very close but yet 8 more questions are answered. Looking closer at the extracted
answers shows that with the patterns learnt with the keyword information, 21 answers

BIRTHYEAR LOCATION

Keyword || #Answers | MRR || #Answers | MRR

not used 55/100 | 0.452 34/93 0.172
used 63/100 0.485 57/93 0.513

Table 2. Results using Alignment Learning with Suffix Trees. Column #Answers gives
the number of times at least one of the correct answers belongs to the top 5 answers

are considered incorrect because they contain the exact birth date and not just the
birth year, for example "January 20, 1946" instead of “1946", against 5 with the rules
learnt without using the keyword. Considering these answers correct brings the MRR
to 0.672 with the keyword information and 0.475 without.

Moreover, with BIRTHYEAR questions and the rules learnt with the keyword infor-
mation, we notice that, in most cases, when a correct answer has been extracted but is
not in the top 5 answers, which happens 13 times, all the answers ranked higher are
just noise and none of them are dates, not even numbers. This particular case shows
the main weakness of these patterns. Indeed, they are based on raw text only and do
not provide any information concerning the answer to be extracted. Adding informa-
tion about the answer would help solve this problem. For example, with BIRTHYEAR
questions, the POS tag could tell that the answer must be a number.

Overall, looking at the patterns makes it easy to explain why those learnt using the
keyword perform better on both question classes. Indeed, both on BIRTHYEAR and on
LOCATION questions, when the keyword is not used, the algorithm learns patterns that
are very precise but too specific. Most of the patterns contain the value of the key-
word, for example “Adams ((ANSWER)” or “Hitchcock ((ANSWER)” with BIRTHYEAR
questions, and “Parthenon, (ANSWER)” or “Balaton , (ANSWER)” with LOCATION ques-
tions. Since the keyword is not abstracted, these patterns are too specific and cannot
be used to answer different questions. When the keyword is abstracted, the patterns
are more general and the previous patterns are replaced by “(KEYWORD) ((ANSWER)”
for BIRTHYEAR questions and “(KEYWORD) , (ANSWER)” for LOCATION questions.

3.4. Experiments with RAPIER

3.4.1. Algorithm

The second approach consists in using the /E system RAPIER [CAL 98] to learn
answer extraction patterns and extract the answers. RAPIER’s patterns have a more
abstract view of texts. Indeed, not only do they use the value of the token, but they
also use its POS tag. These patterns are sequences of tokens on which there are two
types of constraint, each constraint being a disjunction of possible values. The first
constraints are word constraints and concern the value of the token. For example, if
the constraint is a list of the words a, b and ¢, then the token must be one of these three

words. The second constraints are called Part-Of-Speech constraints and indicate
which POS tag the token must have. Having these two constraints allows the system to
generalize his patterns and, for example, learn a pattern saying that a token must have
the POS tag “NN” (noun) without explicitly giving its value. The reader is reported
to [CAL 98] for further explanation on how RAPIER works.

Since RAPIER does not give a confidence score for each candidate answers, we
cannot rank the candidate answers as we did with alignment learning. However
RAPIER’s patterns set is ordered, the candidate answers are ranked accordingly to
the rank of the pattern that extracted them. For example, if “1756” is extracted by rule
1 and “1845” by rule 3, the best candidate answer is “1756”.

3.4.2. DataSet Pre-processing

To meet RAPIER requirements, we had to add POS tags to our passages. We used
Brill’s POS tagger [BRI 92] to do so. To take advantage of the keyword information,
we also abstracted it by replacing all its occurrences by the tag (KEYWORD).

3.4.3. Results

BIRTHYEAR LOCATION

Keyword || #Answers | MRR || #Answers | MRR

not used 66/100 0.491 10/93 0.099
used 74/100 0.579 11/93 0.085

Table 3. Results using RAPIER. Column #Answers gives the number of times at least
one of the correct answers belongs to the top 5 answers

Table 3 shows the results. The first thing to notice is that RAPIER does not per-
form well on LOCATION questions. Indeed, whether the keyword information is used
or not, the results are equally poor, meaning these results are independent of the key-
word. The problem in this case is that RAPIER never generalizes on the answer to
extract, i.e. in all the patterns it learns, the word constraints on the tokens to be ex-
tracted are lists of the answers encountered during the learning process. Therefore, the
patterns are far too specific to the questions in the learning corpus, and hence cannot
be used to answer other questions. Here, RAPIER may need more examples to learn
on in order to perform a proper generalization and learn more efficient patterns.

Oppositely, on BIRTHYEAR questions, the system performs well and using the key-
word improves the performances. For example, whether the keyword is used or not,
RAPIER is able to learn a pattern saying that the answer is a number, preceded by a
“(” and followed by a “-”, as in “Mozart (1756 - 1791”. But when using the keyword,
RAPIER is also able to learn that the token preceding the “(” is precisely the keyword,
whereas when the keyword is not abstracted, RAPIER is at best able to learn that this
token is a proper noun. Unfortunately, this is the only generalized pattern produced
by RAPIER in our experiments. All the other patterns are over specific for the same

reason as with LOCATION questions. Once again, a larger set of examples may have
helped RAPIER to learn more general patterns. But providing larger sets of examples
is difficult for some question classes and may be expensive.

3.5. Experiments with PAF

3.5.1. Algorithm

The third learning algorithm we used is PAF [MAR 04]. This algorithm’s ap-
proach is very different from the previous two algorithms. Indeed, it does not learn
patterns, but classifiers. The passages of our corpora being tokenized, a separator is
defined as the position between two successive tokens. Thus, to identify the correct
answer, we need to identify its start separator and its end separator. Separators are
represented as an attribute-valued vector. PAF learns to identify separators using su-
pervised classification. The classifiers learnt are readable decision trees produced by
Quinlan’s C5. To rank the candidate answers given by PAF, a score for each candidate
answer is computed the same way as was done with alignment learning.

3.5.2. DataSet Pre-processing

For the classifier to be able to effectively learn how to classify the separators, we
had to choose a document representation, i.e. a list of attributes. In our experiments,
we considered the following attributes for each token:

— the Part-Of-Speech tag (Brill’s POS tagger [BRI 92] was used);

— an attribute saying whether the token is a word, a number or a punctuation sym-
bol. This is a generalization over the Part-Of-Speech tag;

— the case of the token: allCaps, lowercase, Upperlnitial or Lowerlnitial;
— the length of the token (i.e. its number of characters).

Note that this document representation is an abstraction of the initial text, as it
does not use the string value of the tokens. Hence, unlike RAPIER, PAF cannot learn
lists of the answers encountered in the learning corpus.

To use the keyword, we could not abstract it since the string values of the tokens are
not considered. Therefore, we added an attribute that represents the distance between
the keyword and the answer. For example in the passage “Mozart (1756 - the distance
is 1 token. The order in which the keyword and the answer appear is also represented.
In our example, the keyword is before the answer.

3.5.3. Results

Table 4 shows the results, which outperform the other ones. On the one hand, with
BIRTHYEAR questions, the system performs very well and the keyword attribute helps
improve the results. At the root of the decision tree learnt without using the keyword
attribute, one can read that the answer must be a number of length 4, which is not

BIRTHYEAR LOCATION
Keyword || #Answers | MRR || #Answers | MRR
without keyword attribute 75/100 | 0.557 71/93 0.513
with keyword attribute 82/100 | 0.601 68/93 0.506

Table 4. Results using PAF. Column #Answers gives the number of times at least one
of the correct answers belongs to the top 5 answers

preceded by another number. The second condition is used to eliminate the death
year, which often follows the birth year. When using the keyword attribute, we have
more precise answers since PAF also learns, for example, that when a 4-digit number
is preceded by the keyword and a “(”, it is the correct birth year.

On the other hand, results with LOCATION questions are more surprising. Indeed,
the system performs slightly better without using the keyword attribute. But first,
we also notice that the MRR is almost the same in both cases. Moreover, whether
the keyword attribute is used or not, the system extracts the same answers, the only
difference being that, when using the keyword attribute, three of them are not ranked
in the top 5. So the difference may lie more in the ranking than in the extraction itself.
Finally, this result does not mean, of course, that the keyword is useless. Remember
that all the passages of the testing corpus consist in windows around the keyword. So
the keyword has in fact already been used, and in this particular case, passage selection
might be precise enough to help PAF locate the correct answer.

4. Conclusion and Future Works

Our experiments show that, with these three algorithms, using the keyword helps
them learn better extraction rules. Indeed, knowing the keyword allows the rules to
be less specific to the questions in the learning corpus, and hence more efficient when
answering questions that are not in the learning corpus. However, this improvement
seems to be less significant with a rich document representation, as with PAF.

Somehow, our experiments indicate that more than tuning or changing the learning
algorithm in the extraction step, the crucial choice is the document representation
given the question class. PAF approach is well-suited to do so. The results with it
tend to show that on the corpus we built, a document representation which abstracts
the initial text but which is rich enough (POS tags, punctuation, etc.) might give better
results and flexibility.

Overall, we need to do further experiments to confirm our results. First, experi-
menting with other question classes will help validate that our resultsdo not depend
on the question class. Moreover, we could enrich our document representation, for
example with the use of a named entity tagger, to validate the improvements given by
a richer representation.

5. References

[ABN 00] ABNEY S., COLLINS M., SINGHAL A., “Answer extraction”, ANLP-2000, 2000.

[BRI92] BRILL E., “A Simple Rule-Based Part Of Speech Tagger”, Proceedings of the Third
Conference on Applied Computational Linguistics (ACL), 1992.

[BR102] BRrRILL E., DUMAIS S., BANKO M., “An analysis of the AskMSR question-
answering system”, 2002.

[CAL 98] CALIFF M. E., “Relational Learning Techniques for Natural Language Information
Extraction”, report num. Al98-276, August 1998, Artificial Intelligence Laboratory, Uni-
versity of Texas of Austin.

[CAR 04] CARME J., LEMAY A., NIEHREN J., “Learning Node Selecting Tree Transducer
from Completely Annotated Examples”, 7th International Colloquium on Grammatical
Inference, Lecture Notes in Artificial Intelligence, Springer Verlag, 2004.

[GRE 61] GREEN B. F., WoLF A. K., CHOMSKY C., LAUGHERY K., “BASEBALL: An
Automatic Question Answerer”, Proceedings of the Western Joint Computer Conference
19, 1961, p. 219-224.

[KUS 02] KusHMERICK N., “Finite-state approaches to Web information extraction”, Proc.
3rd Summer Convention on Information Extraction, 2002.

[LEH 78] LEHNERT W., The Process of Question Answering: A Computer Simulation of Cog-
nition, Lawrence Erlbaum Associates, 1978.

[LIG 04] LiGOzAT A.-L., “Systeme de Question-Réponse : Apport de I’Analyse Syntaxique
a I’Extraction de la Réponse”, conférence RECITAL 2004, Fes, avril 2004.

[MAR 04] MARTY P., TORRE F., “Codages et connaissances en extraction d’information”,
Actes de la Sixiéme Conférence Apprentissage CAp’2004, 2004, p. 207-222.

[NYB 03] NYBERG E., MITAMURA T., CALLAN J., CARBONELL J., FREDERKING R.,
COLLINS-THOMPSON K., HIyYAkumoTO L., HUANG Y., HUTTENHOWER C., JuDY S.,
Ko J., Kupsc A., LITA L. V., PEDRO V., SVOBODA D.,, DURME B. V., “The JAVELIN
Question-Answering System at TREC 2003: A Multi-Strategy Approach with Dynamic
Planning”, Proceedings of TREC 12, November 2003.

[PO1 03] PoiBEAU T., Extraction Automatique d’Information, Hermes, Paris, 2003.
[RAV 02] RAVICHANDRAN D., Hovy E., “Learning Surface Text Patterns for a Question

Answering System”, Proceedings of the 40th Annual Meeting of the Association for Com-
putational Linguistics (ACL), 2002.

[SOD 99] SODERLAND S., “Learning Information Extraction Rules for Semi-Structured and
Free Text”, Machine Learning, vol. 34, num. 1-3, 1999, p. 233-272.

[USU 04] UsuNIER N., AMINI M., GALLINARI P., GRAU B., “Génération de requétes pour
les systemes de Q/R avec un modele d’apprentissage statistique”, Workshop Question-
Réponse TALN 2004, Fez, Maroc, 2004.

[VOO 99] VOORHEES E., TicE D., “The TREC-8 question answering track evaluation”,
1999.

[WOO 73] Woobs W., “Progress in Natural Language Understanding - An Application to
Lunar Geology”, AFIPS Conference Proceedings, volume 42, 1973, p. 441-450.

