ARIA

Association Francophone de Recherche d’Information (RI) et Applications

Actes de CORIA 2010
PDF

Auteurs

Kamilia Menghour, Labiba Souici-Meslati

Résumé

La sélection des caractéristiques est une étape importante dans les systèmes de classification. Elle vise la réduction du nombre de caractéristiques tout en essayant de préserver ou d’améliorer la performance du classifieur utilisé. Dans cet article, nous proposons une démarche de sélection de caractéristiques, basée sur l’apprentissage automatique, dans le contexte du filtrage de spams qui est considéré comme une tâche de catégorisation de textes. Notre approche consiste à évaluer individuellement chacun des attributs décrivant les messages textuels afin d’ordonner les caractéristiques puis en sélectionner un sous-ensemble suite à une évaluation de performances effectuée en utilisant des classifieurs bayésiens (Naive Bayes) ou de type SVM (Support Vector Machines). Nous avons entrepris une comparaison expérimentale en testant plusieurs combinaisons qui correspondent à des variations des types de classifieurs, des stratégies de sélection (forward/backward) et des méthodes d’évaluation individuelle des attributs, et nous avons obtenu des résultats intéressants. En effet, dans certains cas, nous avons abouti à une réduction significative du nombre de caractéristiques, accompagnée d’une amélioration des performances.

Abstract

Feature selection is an important step in classification systems. It aims at reducing the number of features while trying to preserve or improve classifier performance. In this article, we propose a machine learning based feature selection approach, in the context of spam filtering which is considered as a text categorization task. Our approach consists in an individual evaluation of each attribute describing the textual messages in order to sort the features and then select a subset according to a performance evaluation that uses bayesian or SVM classifiers (Naive Bayes or Support Vector Machines respectively). We carried out an experimental comparison by testing several combinations which correspond to variations of classifier types, selection strategies (forward/backward) and individual feature evaluation methods, and we obtained interesting results. Indeed, in some cases, we achieved a significant reduction of the feature number in addition to a performance improvement.

Posts Récents

Catégories

A Propos

ARIA (Association Francophone de Recherche d’Information (RI) et Applications) est une société savante, association loi 1901, ayant pour but de promouvoir le savoir et les connaissances du domaine de la Recherche d’Information (RI) et des divers domaines scientifiques en jeu dans la conception, la réalisation et l’évaluation des systèmes de Recherche d’Information.