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RESUME. Nous étudions dans cet article le comportement de plusiewdéles de rétro-
pertinence en mettant en avant leurs principales carastigies. Ceci nous conduit a intro-
duire une nouvelle contrainte pour les modeles de rétrdaipence, contrainte liée a la fré-
guence documentaire (DF) des mots. Nous analysons enduite,point de vue théorique,
différents modéles de rétro-pertinence par rapport a cetietrainte. Cette analyse montre
gue le modéle de mélange utilisé en rétro-pertinence painiedéles de langue ne satisfait
pas cette contrainte. Nous réalisons ensuite une sérigdfénces qui permettent de valider
la contrainte DF. Pour cela, nous utilisons tout d’abord urade sur la base de documents
pertinents, puis utilisons une famile de fonctons de tyjdf tinais paramétrée de telle sorte
gue des individus différents de la famille auront des corgpoents différents par rapport a la
contrainte DF. Ces expériences montrent la validité etartance de la contrainte DF.

ABSTRACTWe study in this paper the behavior of several PRF modelsdisplay their main
characteristics. This will lead us to introduce a new hetitisonstraint for PRF models, re-
ferred to as the Document Frequency (DF) constraint. We #mathyze, from a theoretical point
of view, state-of-the-art PRF models according to theiati@in with this constraint. This anal-
ysis reveals that the standard mixture model for PRF in tingleage modeling family does not
satisfy the DF constraint. We then conduct a series of expanis in order to see whether the
DF constraint is valid or not. To do so, we performed testfait oracle and a simple family of
tf-idf functions based on a prametercontrolling the convexity/concavity of the function. Both
the oracle and the results obtained with this family of fiore validate the DF constraint.

MOTs-CLES Modéles de RI, boucle de rétropertinence
KEYWORDSIR theoretical models, pseudo-relevance feedback
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1. Introduction

In the language modelling approach to IR, the mixture modepkeudo-relevance
feedback is a state of the art algorithm. Numerous studiestuss a baseline, and
it has been shown to be one of the most effective models instefnperformance
and stability wrt parameter values in (let al.,2009). However, several recently pro-
posed models outperform this model, as models based onrzaggodels based on
a mixture of EDCM distributions and information models (l8@-Thompsoret al.,
2007, Xuet al.,2008, Clinchanet al.,2010). We try here to highlight what these new
models have in common. This leads us to formulate a heudstistraint for pseudo-
relevance feedback, which we will refer to as the Documertjiency constraint.
Our analysis shows that most proposed models meet thisstiewrdntraint. Finally,
we run experiments to assess the validity of this cnstraim.notations we use throu-
ghout the paper are summarized in table 1, wherepresents a term. We natehe
number of pseudo relevant document usedhe feedback set and the number of
term for pseudo relevance feedback. An important changetafions concerng' F
and D F' which are in this papeaelated to the feedback sét

| Notation | Description

General
c(w, d) Number of occurrences af in documentl
lg Length of documend
N Number of documents in the collection
Sw Number of occurrences af in the collection
Nw Number of documents containing
IDF(w) —log(n./N)
PRF specific
n Number of (top) documents retained for PRF
F Set of documents retained for PRF = (d1,...,d,)
tc TermCount number of terms if¥' to be added to the query
TF(w) => aer c(w, d)
DF(w) = gerp L(c(w,d) > 0)

Tableau 1. Notations

2. Pseudo-Relevance Feedback Statistics

We begin this paper by analyzing the terms chosen and therpgfce obtained by
three different, state-of-the-art, pseudo-relevancdliaek (PRF hereafter) methods,
namely the mixture model and the divergence minimizatiothoe in the language
modeling family (Zhaiet al., 2001), and the mean log-logistic information model
in the information-based family (Clinchaat al.,2010). These models are reviewed
later in section 4, and their exact formulation is not neagskere. In order to have
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Tableau 2. Statistics of the size of the Intersection
Collection| n | tc | Mean| Median| Std |
robust | 10| 10 | 5.58 6.0 1.60
trec-12 | 10| 10| 5.29 5.0 1.74
robust | 20 | 20 12 12 3.05
trec-12 | 20| 20| 11.8 13 3.14

an unbiased comparison, we use the same IR engine for thevedtstep. Thus, all
PRF algorithms are computed on th@meset of documents. Once new queries are
constructed, we use either the Dirichlet language modelif®new queries obtained
with the mixture model and the divergence minimization roejhor the log-logistic
model (for the new queries obtained with the mean log-lagistormation model) for
the second retrieval step, thus allowing one to compareehf@pnance obtained by
different methods on the same initial set of PRF documemts.cbllections are used
throughout this study : the ROBUST collection, with 250 degrand the TREC 1&2
collection, with topics 51 to 200. Only query titles were diserhich is a common
setting when studying PRF (Dilloet al., 2010). All documents were preprocessed
with standard Porter stemming.

2.1. Term Statistics

We first focus on a direct comparison between the mixture e the mean log-
logistic information model, by comparing the terms commerbbth feedback me-
thods, i.e. the terms in the intersection of the two selestg#d. Table 2 displays the
mean, median and standard deviation of the size of the ettos, over all queries,
for the collections considered. As one can note, the two austlhagree on a little more
than half of the terms (ratio mean k), showing that the two models select different
terms. To have a closer look at the terms selected by bothaugthve first compute,
for each query, the total frequency of a word in the feedbatki®.T F(w)) and the
document frequency of this word in the feedback set @&!(w)). Then, for each
query we can compute the mean frequency of the selected iethesfeedback set as
well as its mean document frequency, yé.f) andg(df) :

q(TF) = Z % andg(DF) = DF(w:)

‘ ‘ tc
=1 i=1
We then compute the mean of the quantities over all queries.

W(TF) =" q%f) andu(DF) =Y Q(@f)

An averagel DF' can be computed in exactly the same way. Table 3 displays the
above statistics for the three feedback methods : mixturdem@IX), mean log-
logistic(LL) information model and divergence minimizatimodel (DIV). Regarding
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Tableau 3. Statistics of terms extracted by
Settings | Statistics | MIX LL DIV
w(tf) 62.9 | 46.7 | 57.9
robust-A w(df) 6.4 | 7.21 | 841
Mean IDF | 4.33 | 5.095| 2.36
w(tf) 114 .0| 79.12| 98.76
trec-1&2-A w(df) 7.1 7.8 8.49
Mean IDF | 3.84 | 4.82 25
w(tf) 68.6 | 59.9 | 68.2
robust-B w(df) 9.9 119 | 144
Mean IDF | 4.36 | 4.37 1.7
w(tf) 137.8 | 100.0| 118.45
trec-1&2-B w(df) 12.0 | 13.43| 14.33
Mean IDF | 3.82 | 4.29 2.0

the mixture and log-logistic models, on all collectionsg tmixture model chooses
in average words that havehégher TF, and a smalleDF. The mixture model also
chooses words that amsore frequent in the collectiosince the mean IDF values are
smaller. On the other hand, the satistics of the divergeramehshows that this model
extracts very common terms, with low IDF and high DF, whichwee will see later,
is one of the main drawback of this model.

2.2. Performance Statistics

In addition to the term statistics, the performance of eaRk Blgorithm can also be
assessed. To do so, we first examine the performance of ttibdele termawvithout
mixing them with the original queries- we call this settiragv. Then, for each query
we keep only terms that belong to the intersection of the uméx{respectively the
divergence minimization) and log-logistic models , but fkelkeir weight predicted
by each feedback method. We call this settingrse A third setting,diff, consists
in keeping terms which do not belong to the intersectionalimthe last settingin-
terpofor interpolation, measures the performance when new tarmsixed with the
original query. This corresponds to the standard settipgsefido-relevance feedback.
Table 4 displays the results obtained. As one can note, thlfgistic model performs
better than the mixture model, as found in (Clinchetrél.,2010). What our analysis
reveals is that it does so because it chooses better feetdrack, as shown by the
performance of theliff setting. For the terms in the intersection, metimdrse the
weights assigned by the log-logistic model seem more apateghan the weights
assigned by the other feedback models.

Let's summarize our finding here. (a) The log-logistic mquefforms better thant
the mixture and divergence models for PRF. (b) The mixtukdivergence models
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Tableau 4.Mean Average Precision for

Settings | FB Model | MIX | LL | DIV
raw 23.8| 26.9| 24.3
robust-A int(_arse 246 | 25.7| 241
diff 3 11.0| 0.9
interpo | 28.0 | 29.2| 26.3
raw 23.6 | 25.7| 241
interse | 24.2 | 245| 23.4
trec-1&2-A diff 3 9 0.9
interpo | 26.3 | 28.4| 25.4
raw 23.7 | 25.7| 22.8
robust-B int(_arse 253 | 26.2| 22.6
diff 3.0 | 10.0| 0.15
interpo | 28.2 | 28.5| 25.9
raw 251 | 27.0| 249
interse | 26.1 | 26.5| 24.7
rec-1&2-B 1 g 21 | 11.2] 05
interpo | 27.3 | 29.4| 25.7

choose terms with &igher TFand a smalleDF than the log-logistic one. A first
explanation of the better behavior of the log-logistic maxda be that the IDF effect
is dealt with more efficiently in this model, as shown by thatistics reported in
table 3. We also postulate that the log-logistic model tendavor terms with &igh
DF, while the other models favor terms with a I@¥. This leads us now to propose
a new heuristic constraint for pseudo-relevance feedback.

3. Heuristic Constraints

Axiomatic methods were pioneered by Fang et al (Fahgl.,2004) and followed
by many works including (Fanegt al.,2006, Cummingt al.,2007, Clinchantt al.,
2010). In a nutshell, axiomatic methods describe IR fumstiby properties. Accor-
ding to (Clinchantt al.,2010), the four main conditions for an IR function to be valid
are : the weighting function should (a) be increasing ando@boncave wrt docu-
ment term frequencies, (c) have an IDF effect and (d) pes#dizag documents. In the
context of pseudo-relevance feedback, Lv @ial.,2009) mentions a document score
heuristic constraint implemented in relevance models igakoet al.,2001) and in
the Rocchio algorithm (Hoaskt al.,2001). The document score heuristic constraint
can be formulated as follows :
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PRF Heuristic Constraint 1. [Document Score]Document with higher score should
be given more weight in the feedback weight function.

Another heuristic is related to the term proximity consttathat is feedback terms
should be close to query terms in documentséLal.,2010).

The development made in the previous section however stefpas an additional
constraint seems to regulate the good behavior of PRF mddelksed, as we have
seen, the best PRF model we have studied favors feedbackwetimae high document
frequency in the feedback set, whereas the ohter modelandidtfail to do so. This
constraint can be formalized as follows :

PRF Heuristic Constraint 2. [Document Frequency]Lete > 0, anda andb two
words such that :

1) IDF(a) = IDF(b)
2) The distribution of the frequencieswfc(a, d)) in the feedback set is given by :

T(a) = (z1,22,...,2;,0,...,0)
3) The distribution foi is given by :T'(b) = (z1, 2, ..., z; — €€, ..., 0)
4)Vi,z; > 0andz; —e >0

Hence I F(a) = TF(b) andDF(b) = DF(a) + 1. Then, the feedback weight func-
tion FW (.) is such thatF W (a) < FW(b)

In other words,FWV(.) is locally growing with DF(w). It is possible to define
a constraint based on a globally growing function, but tlimplicates the matter.
Furthermore, the above constraints directly capturesrttugtion put forward for the
document frequency behavior. The following theorem allomne to decide whether
a given PRF model agrees or not with the document frequenkgy ¢bnstraint for a
large class of models (as we will see below) :

Theorem 1. Supposé&'IV can be written as :
FW(w) = 3 f(c(w,d)) [1]
d=1

with f(0) = 0. The we have :

1) If the functionf is strictly concave, the'I/” meets the DF constraint.
2) If the functionf is strictly convex, the'1V does not meet the DF constraint.

Proof If f is strictly concave, then the functiofi is subadditive f(a 4+ b) <
f(a)+ f(b)). Leta andb be two words satisfying the conditions of the DF constraint.
We have :

FW(a) = FW(2',...,27, 0,...,0 )
—— ——

DF(a) mn—DF(a)
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and : . }
FW(b) — FW(a) = f(2? —€) + f(e) — f(z’)

As the functionf is subadditive, we have W (b) — FW(a) > 0. If f is strictly
convex, thenf is superadditive ag(0) = 0, and a comparable reasoning leads to
FW(b) — FW(a) < 0. O

As we will see in the next section, many recently proposed RieBels follow equa-
tion 1, and can be analyzed with the above theorem.

4. Review of PRF Models
4.1. PRF for Language Models

Traditional methods, such as Rocchio’s algorithm, extieehs from feedback docu-
ments and add them to the query. The language modeling (Lptpagh to informa-
tion retrieval follows this approach as it extracts a multimial probability distribution
over words from the feedback document set, parametrizetl:bYAssumingfr has
been estimated, the LM approach proceeds by interpoldtsnguery language model
with 0r :

0y = aby+(1—a)ip [2]

In practice, one restrictér to the toptc words, setting all other values to 0. The
different feedback models then differ in the way is estimated. We review the main
LM based feedback models below.

4.1.1. Mixture Model

Zhai and Lafferty (Zhakt al., 2001) propose a generative model for the BetAll
documents are i.i.d and each document comes from a mixtutigeafelevant topic
model and the corpus langague model :

\%
F|9F56 >\ H )\GF»LU 1 — )\)P(w|0))TF(w) [3]

where) is a fixed parameter, which can be understood as a noise paraimethe
distribution of terms. Finally is learned by optimising the data loglikelihood with
an Expectation-Maximization (EM) algorithm. It is trivitd show that this mixture
model does not meet the DF constraint, since it is DF agnostic

4.1.2. Divergence Minimization

Zhai (Zhaiet al.,2001) also propose the divergence minimization model :

n

D(6y|RF) = Z (0 Il 0a,) = AD(0rIp(- || €))
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wheref,;, denotes the empirical distribution of words in documgniMiminizing this
divergence gives the following solution :

A
1-A

OF o exp(ﬁ Zlog(p(wwdi)) — log(p(w|C’))

This models amounts to the geometric mean of the smoothadd models with a
regularization term. Our previous experiments and thodesgEv et al.,2009) show
that this model does not perform well. Although it meets tiedonstraint (by using
a geometric mean leading to a concave function), the IDFceféenot sufficiently
enforced, and the model fails to downweight common wordshasvn in Table 3.
In other words, this model chooses common words which do havigh document
frequency, but are not interesting for retrieval.

4.1.3. Other Models

A regularized version of the mixture model, known as the ladgzed mixture model
(RMM) and making use of latent topics, is proposed in (&al.,2006) to correct
some of the deficiencies of the simple mixture model. RMM hasidvantage of pro-
viding a joint estimation of the document relevance weigtmd the topic conditional
word probabilities, yielding a robust setting of the feedbparameters. However, the
experiments reported in (Let al., 2009) show that this model is less effective than
the simple mixture model in terms of retrieval performarfoe precision and recall.
We will thus not study it further here, but want to mentionyertheless, an interes-
ting re-interpretation of this model in the context of thencave-convex procedure
framework (Dillonet al.,2010).

Another PRF model proposed in the framework of the languagdeting ap-
proach is the so-called relevance model, proposed by Lkarehal. (Lavrenkoet
al., 2001), and defined by :

FW(w) o< > Ppa(w]fa)P(d]q) [4]
deF

where P, denotes the standard language model. Because of its releanthe lan-
guage model, the above formulation is compliant with alldlessical IR constraints.
Furthermore, it corresponds to the form of equation 1 of Téeol, with a linear
function, which is neither strictly concave nor strictlymw@x. This model is neutral
wrt the DF constraint. As we have mentioned before, it satifie DS constraint.

The relevance model has recently been refined in the studgpied in (Seet al.,
2010) through a geometric variant, referred to as GRM, afidettby :
FW (w) o< [ ] Pras(w]fa) "9
deF

Let us first consider the standard language model with Jelercer smothing (Zhai
et al.,2004) : Py (w|bq) = (1 — )\)@ + )\% wherec(w, C') denotes the
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number of occurrences af in the collectionC andic the length of the collection.
Let w, andw, be two words as defined in constraint DF, and let us furthaermss
that feedback documents are of the same lefgthd equiprobable giveq. Then
FW (w,) and FW (wy) respectiveley differ on the two quantities :

dc-t C - C \
(Z) ((1 — )\)C(wa{ j) +>\C(U)la; ))()\6(1;7 ))
c c
(1) (1= X al=e A D) (1 = )7 AL
—

e’

The second quantity amounts to :
(@—e)B+e)=af+e(a—p) ()

Buta— 3= (1-)) M a quantity which is strictly greater thah— \) ¢ = ¢’ by
the assumptions of the DF constraint. Thus the GRM modedfgegtithe DF constraint
when Jelinek-Mercer is used. For the Dirichlet smoothiegjrsg :

_ c(w, d) + pp(w|C) 5= pp(w|C)

= , , ande’ =
l+u I+

I+ p

leads to exactly the same development as above. The GRM todedatisfies the DF
constraint for both Jelinek-Mercer and Dirichlet smoothifithe use of the exponent
P(d|q) also shows that it satisfies the DS constraint.

4.2. PRF under the Probability Ranking Principle

Xu and Akella (Xuet al.,2008) propose an instanciation of the Probability Ranking
Principle (PRP) when documents are modelled with a DiricBlempound distribu-
tion. Instead of relying on the PRP to extract new terms, fhr@pose a generative
model of documents. In their PRP framework, relevant documare assumed to
come from a Dirichlet Compound Multinomial (DCM) distriliom, the parameters of
which will be denoted,, . In the feedback process, documents arise froanaixture
of Extended DCM distribution€ontrary to the mixture model, the mixing parameter
for each document is not fixed. Furthermore, several motiifica of the EM algo-
rithm to moderate the biais of the generative approach ard. d$hose modifications
are similar to the regularized mixture model studied in (€a@l., 2006). One can
show that maximizing the EDCM likelihood leads to forgef’ information. Only
DF matters for the EDCM model. Let= 3" | 4,,, thens verifies the following
fixed-point equation :

2 DE(w)
YU (s +1g) — n¥(s)

S
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Onces is known, thef,, can be obtained directly by :
_ DF (w)
C g P(s+la) —n¥(s)

It is then easy to show that maximizing the likelihood of an@W model entails the
DF constraint.

0w

4.3. PRF in Divergence from Randomness (DFR) and I nformation Models

In DFR and information models, the original query is modifigalowing standard
approaches to PRF, to take into account the words appearifigaiccording to the
following scheme :

’ xd InfOF(w)
q — w 5
Tw max, zl + ﬁmaxw Infop(w) [5]

whereg is a parameter controlling the modification broughtfto the original query
(x4, denotes the updated weightwfin the feedback query, wherea% corresponds
to the weight in the original query).

4.3.1.Bo2

The standard PRF model in the DFR family is the Bo2 model (Aregal., 2003),
which is defined by :

go = (O la)pw|C)
der
|nf0302(w) = 10g2(1 +gw) +TF(U)) 10g2(1 +gw)

w

In other words, documents in F are merged together. A Gewy@tybability model
measures the informative content of a word. As this modeFsBnostic, it does not
entail the DF constraint.

4.3.2. Log-logistic Model

For information models (Clinchardt al., 2010), the average information this set
brings on a given termv is used as a criterion to rank terms, which amounts to :

1
Infop(w) = - Z —log(P(Xy > t%|\y))
deF

The log-logistic model for pseudo relevance feedback isedfby :

t(w,d) = c(w, d)log(1 4+ c(wl“z_l) [6]
FW (w) = Y [log(5# + t(w,d)) + IDF (w)] [7]

deF
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As the log is a concave function, the log-logistic modelsfas the DF constraint by
theorem 1. Similarly, the SPL model proposed in (Clinchatrdl.,2010) satisfies the
DF constraint.

Having reviewed several state-of-the-art PRF models witté@r behavior accor-
ding to the DF constraint, we now turn to an experimentabaion of this constraint.

5. Validation of the DF Constraint

We present here a series of experiments conducted in ordesstss whether the
DF constraint is a valid constraint in pseudo-relevancdliaek. To do so, we first
describe the oracle used to escape away from (and thus mgf bieised by) any given
model.

5.1. Oracle

Suppose an oracle could tell the performance of each ingidiord in a pseudo-
relevance feedback setting. Then, one could look at thdeovemrd statistics (mean
TF, mean DF) in order to further validate the DF constrairdwidver, if we use such
an oracle on pseudo-relevance feedback sets, there il lde a significant variation
of these statistics, since there is a significant variatithé precision at 10. Indeed, it
is difficult to compare the TF statistics for a query witf10 = 0.1 and for a query
such thatP@10 = 0.9. It is difficult to observe a global tendency in such a casks. It
however possible to overcome the query variation perfonadmy using true relevance
feedback. The experimental setting we follow is thus defaxed

— Start with a first retrieval with a Dirichlet language mogel

— Select the first 10 relevant documents if possible, elsscséte topR, (R, <
10) relevant documents;;

— Construct a new query (50 words) with the mixture model;

— Construct a new query (50 words) with the log-logistic mode

— Compute statistics for each word in the new queries.
Statistics include a normalizddF’, equal toD F'(w)/R,, and a normalized F' statis-
tics (theT F is divided by the actual number of document used for relesé@edback,
R,). Each wordw is added independently with weights predicted by the rethiPRF
model. For each word), we measure the MAP of the initial query augmented with
this word. The difference in performance with the intial guean be computed as :
A(MAP) = MAP(q+w)— M AP(q). We thus obtain, for each term, the following
statistics :

—A(MAP)

—log(1+TF(w))/Ry

- DF(w)/R,
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Figure 1. (log(TF),DF) vsA MAP on ROBUST ; true releevant documents are used
with n = 10, tc = 50 and exponential (left) and Gaussian (right) kernel grids &
15). Top row : log-logistic ; bottom row : language model

Figures 1 and 2 display a 3D view of these statistics for a#rgps, using Gnuplot
with gaussian and exponential kernel estimators. On alspthe best performing
regions in the (TF,DF) space correspond to large DFs, thowigly the validity of
the DF constraint. It has to be noted that the TF statistics weamalized to account
for different lengths. In the figures, the DFR normalizatieas used, but the shape
of the plot remains consistent without any normalizatiomben a language model
normalization is used.

5.2. Experimental Validation

Theorem 1 can help us further validate the DF constraintedd, let us use the family
of feedback functions defined by :

FW = t(w,d)" IDF(w) [8]
deF
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with ¢(w,d) = c(w,d)log(1l + c%g—l), which corresponds to the second DFR nor-
malization. Equation 8 amounts to a standatéidf weighting, with an exponerit
which allows one to control the convexity/concavity of tlemdiback model. Accor-
ding to Theore 1, ift > 1 then the function is strictly convex and does not satisfy
the DF constraint. It < 1, then the function is strictly concave and satisfies the DF
constraint, while the linear case, being both concave angecq isin-betweenWe
can then build PRF models from equation 8 with varyingnd see whether the re-
sults agree with the theoretical findings implied by TheoteriVe used these PRF
models with equation 5 and a log-logistic model to asseds pleeformance (as the
log-logistic model was the best performing model in our ipnelary experiments).
Table 5 displays the term statistigs({f),u(df ), mean IDF) for different values d.

As one can note, the smallér the biggeru(df) is. In other words, the slowlier the
function grows, the more terms with large DF are preferredld 6 displays the MAP
for different values of. At least two important points arise from the results oledin
First, convex functions (k>1) have lower performance thancave functions for all
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Tableau 5. Statistics on TREC-12-A
Powerk | u(tf) | w(df) | Mean IDF

0.2 70.46| 7.4 5.21
0.5 85.70| 7.1 5.09
0.8 88.56| 6.82 5.14

1 89.7 6.6 51
1.2 91.0 | 6.35 51
15 90.3 6.1 5.0
2 89.2 5.8 4.9

Tableau 6. MAP for different power function. Suffix A means- 10 and tctc = 10
while suffix B means = 20 and tctc = 20

Powerk robust-A | trec-12-A | robust-B| trec-12-B
0.2 29.3 28.7 28.7 30.0
0.5 30.1 29.5 29.4 30.5
0.8 29.6 29.3 29.4 30.3
1 29.2 28.9 29.1 29.9
1.2 28.9 28.6 28.6 29.6
1.5 28.6 28.1 28.3 28.9
2 28.1 27.2 27.4 28.0

log-logistic 29.4 28.7 28.5 29.9

datasets, as predicted by the DF cosntraint and TheoremchrA®x functions do not
entail the DF constraint, this suggests that the DF comdfisavalid and leads to better
performance. Second, the square root functioa-(0.5) has the best performances on
all collections : it also outperforms the stadard log-ltigimmodel. When the function
grows slowly ¢ equals ta0.2), the DF statistics is somehow preferred compared to
TF. The square root function achieves a different (and Deteede-off between the TF
and DF information. This is an interesting finding as it shthiag the TF information

is still useful and should not be too downweighted wrt the DE.o

6. Conclusion

We have studied in this paper the behavior of several PRF isated have displayed
their main characteristics through a first series of expenits. This led us (a) to show
that the divergence minimization PRF model was deficienthetiDF effect (i.e. this
model selects terms with large IDF), and (b) to introduce & heuristic constraint
for PRF models, referred to as ti®cument Frequency (DF) constrainie have
then analyzed, from a theoretical point of view, statekef-art PRF models according
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to their relation with this constraint. This analysis reeeithat the standard mixture
model for PRF in the language modeling family does not satfsf DF constraint.

We have then conducted a series of experiments in order tw/isether the DF
constraint is valid or not. To do so, we performed tests wittoeacle and a simple
family of tf-idf functions based on a prametercontrolling the convexity/concavity
of the function. Both the oracle and the results obtained its family of functions
validate the DF constraint. Furthermore, our experimeunggest that the square root
function should be preferred over the mean log-logistiolinfation model introduced
in (Clinchantet al.,2010) for pseudo-relevance feedback, as the square rogtdan
achieves a better tradeoff between the DF and TF statistics.
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