ARIA

Association Francophone de Recherche d’Information (RI) et Applications

Actes de CORIA 2015
PDF

Auteurs

Jonathan Louëdec, Max Chevalier, Aurélien Garivier, Josiane Mothe

Résumé

Les systèmes de recommandation (SR) à tirages multiples font référence aux SR qui recommandent plusieurs objets aux utilisateurs. La plupart des SR s’appuient sur des modèles d’apprentissage afin de décider les objets à recommander. Parmi les modèles d’apprentissage, les algorithmes de bandit offrent l’avantage de permettre d’apprendre tout en exploitant les éléments déjà appris. Les approches actuelles utilisent autant d’instances d’un algorithme de bandit que le SR doit recommander d’objets. Nous proposons au contraire de gérer l’ensemble des recommandations par une seule instance d’un algorithme de bandit pour rendre l’apprentis- sage plus efficace. Nous montrons sur deux jeux de données de références (Movielens et Jester) que notre méthode, MPB (Multiple Plays Bandit), permet d’obtenir un temps d’apprentissage jusqu’à treize fois plus rapide tout en obtenant des taux de clics équivalents. Nous montrons également que le choix de l’algorithme de bandit utilisé influence l’amélioration obtenue.

Abstract

The multiple-plays recommender systems (RS) make a refer to RS which recommend several items to the users. Most of RS are based on learning models in order to choose items to be recommended. Among learning models, the bandit algorithms offer the advantage to learn and exploite the already learnt elements at the same time. The current approaches require running as many instance of single-play bandit algorithms as there are items to recommend. We propose to manage all recommendations simultaneously, by a single instance of one single-play bandit algorithm. We show on two benchmark datasets (Movielens and Jester) that our method, MPB (Multiple Plays Bandit), allows to obtain a learning rate until thirteen times faster while obtaining equivalent click-through rates. We also show that the choice of the bandit algorithm used impacts this improvement.

Posts Récents

Catégories

A Propos

ARIA (Association Francophone de Recherche d’Information (RI) et Applications) est une société savante, association loi 1901, ayant pour but de promouvoir le savoir et les connaissances du domaine de la Recherche d’Information (RI) et des divers domaines scientifiques en jeu dans la conception, la réalisation et l’évaluation des systèmes de Recherche d’Information.