ARIA

Association Francophone de Recherche d’Information (RI) et Applications

Actes de CORIA 2017
PDF

Auteurs

Ismail Badache, Mohand Boughanem

Résumé

Une grande partie des traces des utilisateurs exprimées par des signaux sociaux (ex. j’aime, +1, rating) sont attribuées aux ressources web. Ces signaux sont souvent exploités par les systèmes de RI comme des sources d’évidence additionnelles pour trier les résultats de recherche. Notre objectif dans cet article est d’étudier l’impact des nouveaux signaux sociaux, appelés Facebook reactions (j’adore, haha, grrr, wouah, triste) sur le tri de ces résultats. Ces réactions permettent aux utilisateurs d’exprimer des émotions plus nuancés par rapport aux signaux classiques (ex. like, share). Nous analysons tout d’abord ces réactions et montrons la manière dont les internautes les utilisent pour interagir avec les ressources (ex. posts, vidéo, etc). Ensuite, nous évaluons l’impact de ces réactions dans le tri des résultats de recherche en les comparant à un modèles de tri textuel et à un modèle qui prend en compte le signal j’aime. Ces caractéristiques sociales sont modélisées comme une probabilité a priori du document et elles sont intégrées dans un modèle de langue. Nous avons effectué une série d’expérimentations sur la collection INEX IMDb. Nos résultats révèlent que la prise en compte de ces signaux améliore significativement la qualité des résultats de recherche.

Abstract

A large amount of social feedback expressed by social signals (e.g. like, +1, rating) are assigned to web resources. These signals are often exploited as additional sources of evidence in search engines. Our objective in this paper is to study the impact of the new so- cial signals, called Facebook reactions (love, haha, angry, wow, sad) in the retrieval. These reactions allow users to express more nuanced emotions compared to classic signals (e.g. like, share). First, we analyze these reactions and show how users use these signals to interact with resources (e.g. posts, video, etc). Second, we evaluate the impact of each such reaction in the retrieval, by comparing them to both the textual model without social features and the first clas- sical signal (like-based model). These social features are modeled as document prior and are integrated into a language model. We conducted a series of experiments on INEX IMDb dataset. Our findings reveal that incorporating social features is a promising approach for improving the retrieval ranking performance.

Posts Récents

Catégories

A Propos

ARIA (Association Francophone de Recherche d’Information (RI) et Applications) est une société savante, association loi 1901, ayant pour but de promouvoir le savoir et les connaissances du domaine de la Recherche d’Information (RI) et des divers domaines scientifiques en jeu dans la conception, la réalisation et l’évaluation des systèmes de Recherche d’Information.