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(Indicative) outline

• Introduction
• Descriptors
• QBE, search, classification, fusion, post-

processing ...
• Deep learning
• Conclusion
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Multimedia Retrieval

• User need  retrieved documents
• Images, audio, video
• Retrieval of full documents or passages (e.g. shots)

• Search paradigms:
– Surrounding text  may be missing, inaccurate or incomplete
– Query by example  need for what you are precisely looking for
– Content based search (using keywords or concepts)                     
 need for content-based indexing  “semantic gap problem”

– Combinations including feedback

• Need for specific interfaces
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The “semantic gap”

“... the lack of coincidence between the information 
that one can extract from the visual data and the 
interpretation that the same data have for a user in 
a given situation” [Smeulders et al., 2002].
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The “semantic gap” problem

Face
Woman
Hat
Lena
…

122 112 98 85 …

126 116 102 89 …

131 121 106 95 …

134 125 110 99 …

… … … … …

?
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Query BY Example (QBE)

Descriptor Descriptors

Query Documents

Matching function

Scores (e.g. distance or relevance)

Extraction Extraction

Ranking

Sorted list
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Content based indexing by supervised learning

Descriptors Descriptors

Training documents Test documents

Train

Model

Extraction Extraction

Predict

Scores (e.g. probability of concept presence)

Concept annotations
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Example : the QBIC system
• Query By Image Content, IBM (stopped demo) 

http://wwwqbic.almaden.ibm.com/cgi-bin/photo-demo
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Descriptors
• Engineered descriptors

– Color
– Texture
– Shape
– Points of interest
– Motion
– Semantic
– Local versus global
– …

• Learned descriptors
– Deep learning
– Auto encoders
– …
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Histograms - general form
• A fixed set of disjoint categories (or bins), numbered from 

1 to K.
• A set of observations that fall into these categories
• The histogram is the vector of K values h[k] with h[k] 

corresponding to the number of observations that fell into 
the category k.

• By default, the h[k] are integer values but they can also 
be turned into real numbers and normalized so that the h
vector length is equal to 1 considering either the L1 or L2
norm

• Histograms can be computed for several sets of 
observations using the same set of categories producing 
one vector of values for each input set
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Histograms – text example

• A vector of term frequencies (tf) is an histogram
• The categories are the index terms
• The observations are the terms in the documents 

that are also in the index
• A tf.idf representation corresponds to a weighting 

of the bins, less relevant in multimedia since 
histograms bins are more symmetrical by 
construction (e.g. built by K-means partitioning)
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Image intensity histogram

• The set of categories are the possible intensity values 
with 8-bit coding, ranging from 0 (black) to 255 (white) or 
ranges of these intensity values

256-bin 16-bin64-bin
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Image color histogram

• The set of categories are ranges of possible color values
• A common choice is a per component decomposition 

resulting in a set of parallelepipeds

• Any color space can be chosen (YUV, HSV, LAB …)
• Any number of bins can be chosen for each dimension
• The partition does not need to be in parallelepipeds

5×5×5-bin 
125-bin

3×3×3-bin 
27-bin

4×4×4-bin 
64-bin

R

G

B
Representations with the parallelepipeds’ center colors:
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Image color histogram
• The set of categories are ranges of possible color values

5×5×5-bin 
125-bin

3×3×3-bin 
27-bin

4×4×4-bin 
64-bin
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Image histograms
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Image histograms
• Can be computed on the whole image,
• Can be computed by blocks:

– One (mono or multidimensional) histogram per 
image block,

– The descriptor is the concatenation of the 
histograms of the different blocks.

– Typically : 4 x 4 complementary blocks but non 
symmetrical and/or non complementary choices are 
also possible. For instance: 2 x 2 + full image center

• Size problem  only a few bins per dimension 
or a lot of bins in total
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Fuzzy histograms

• Objective: smooth the quantization effect 
associated to the large size of bins (typically       
4×4×4 for RGB).

• Principle: split the accumulated value into two 
adjacent bins according to the distance to the bin 
centers.
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Correlograms
• Parallelepipeds/bins are taken in the Cartesian product 

of the color space by itself : six components 
H(r1,g1,b1,r2,g2,b2) (or only four components if the 
color space is projected on only two dimensions: 
H(u1,v1,u2,v2)).

• Bi-color values are taken according to a distribution of 
the image point couples:

– At a given distance one from the other,
– And/or in one or more given direction.

• Allows for representing relative spatial relationships 
between colors,

• Large data volumes and computations
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Color moments
• Moments (color distribution global statistics)

– Means
– Covariances
– Third order moments
– Can be combined with image coordinates
– Fast and easy to compute and compact 

representation but not very accurate
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Image normalization

• Objective : to become more robust again illumination 
changes before extracting the descriptors.

• Gain and offset normalization: enforce a mean and a 
variance value by applying the same affine transform to 
all the color components, non-linear variants.

• Histogram equalization: enforce an as flat as possible 
histogram for the luminance component by applying the 
same increasing and continuous function to all the color 
components.

• Color normalization: enforce a normalization which is 
similar to the one performed by the human visual: 
“global” and highly non linear.
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Texture descriptors

• Computed on the luminance component only
• Frequential composition or local variability
• Fourier transforms
• Gabor filters
• Neuronal filters
• Cooccurrence matrices
• Normalization possible.
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Gabor transforms

(Circular) Gabor filter of direction , of wavelength  and of extension  :

Energy of the image through this filter:
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


















Elliptic: Circular:

Gabor transforms
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• Circular: 
– scale , angle , variance ,
–  multiple of , typically :  = 1.25 ,

(“same number” of wavelength whatever the  value)

• Elliptic:
– scale , angle , variances  and ,

–  and  multiples of , typically :  = 0.8  et  = 1.6 ,

• 2 independent variables:
– scale  : N values (typically 4 to 8) on a logarithmic scale 

(typical ratio of 2 to 2)
– angle  : P values (typically 8),
– N.P elements in the descriptor,

Gabor transforms
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Selection of points of interest
• “High curvature” points or “corners”,
• “Singular” points of the I[i][j] surface,
• Extracted using various filters:

– Computation of the spatial derivatives at several scales,
– Convolution with derivatives of Gaussians,
– Harris-Laplace detector.

• Interest points are selected, filtered and described
• 2D (image): Scale Invariant Feature Transform (SIFT) 

[Lowe, 2004]
• 3D (video): Space-Time Interest Points (STIP) [Laptev, 

2005]
• Variable number of points per image or per video shot 

need for aggregation
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Descriptors of points of interest
• SIFT descritptor: Histogram of gradient direction:

8 bins times 4 x 4 blocks in a neighborhood of the point.
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Local versus global descriptors
• Global descriptors: single vector for a whole image
• Local descriptors: one vector for each pixel, image patch, 

image block shot 3D patch … e.g. SIFT or STIP
• Need for a single vector of fixed length far any image and 

with comparable components across images
• Aggregation of local descriptors → global descriptor
• Homogeneous with the local descriptor:

– max or average pooling
• Heterogeneous with the local descriptor:

– Histogramming according to clusters in the local descriptor space 
[Sivic, 2003][Cusrka, 2004]

– Gaussian Mixture Models (GMM)
– Fisher Vectors (FV) [Perronnin, 2006], Vectors of Locally 

Aggregated Descriptors (VLAD) [Jégou, 2010] or Tensors (VLAT) 
[Gosselin, 2011], Supervectors
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Semantic or intermediate descriptors
• Use of classifiers trained on other data and for other target 

concepts [Ayache, 2007]
• Vectors of scores of the other target concepts can be used 

as intermediate or high level descriptors (opposed to low-
level ones that are “close to the signal”)

• Semantic descriptors can be either global or local (e.g. on 
pixels or patches)

• Semantic descriptors carry different information than low-
level one and of higher semantic value

• The target concepts composing the semantic descriptors 
does not need to be related to the final target ones

• They do not need either to be recognized very accurately
• Semantic descriptors are often as good as or better than 

state of the art low-level ones and boost performance when 
combined with them
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Query by example
• Single query sample:

– 2, EMD or histogram intersection for histograms
– Euclidian Distance : searching for identities
– Angle between vectors : searching for similarities robust to illumination 

changes (for some other descriptors, e.g. Gabor transforms)

• Multiple queries or relevance feedback:
– Linear combination of distances with different weights for positively and 

negatively marked samples [Rocchio, 1971]
– Supervised learning from the marked samples (active learning)
– Rely also on the choice of a distance between global descriptions

• Direct matching and scoring between sets of local 
descriptors:

– Costly but good for searching specific instances rather than general 
categories
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Content-based indexing
• Training from annotated collections:

– LSCOM-TRECVid for videos
– Pascal VOC or ImageNet for still images
– Many others, e.g. Hollywood2 for actions in movies

• Use of supervised learning methods:
– Support Vector Machines (SVM), linear or RBF
– K nearest neighbors (KNN)
– Neural Networks (NN), Multi-Layer Perceptrons (MLP)
– Many others again
– Adaptations for highly imbalanced data sets

• Fusion if several descriptors and/or several 
learning methods are simultaneously used.

Georges Quénot                      EARIA                      17 October 2014 31

Fusion for concept classification

• Several possible descriptors
• Several possible classifiers
• Early versus late fusion [Snoek, 2005]

– Early: concatenation of normalized descriptors
– Late: combination of classification scores

• Kernel fusion [Ayache, 2007]
– Fusion of kernels in RBF-based (e.g. SVM) learning 

methods
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Re-ranking for concept classification
• Re-ranking (or re-scoring): use of detections 

scores for other concepts of for other samples for 
improving the detection of a given concept for a 
given sample

• Temporal re-scoring [Safadi, 2010]
– Re-score shots in a video with the hypothesis of a 

global or a local homogeneity of the contents
• Conceptual re-scoring [Hamadi, 2013]

– Re-score an image or video sample for several 
concepts using implicit (co-occurrences) or explicit 
(ontologies) between them

• Combination of both
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Formal neural or unit

ݕ ൌ෍ݓ௝ݔ௝௝

z

x1
x2
x3
x4
x5

ݖ ൌ 11 ൅ ݁௬
linear combination sigmoid function

w
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Neural layer (all to all)

௜ݕ ൌ෍ݓ௜௝ݔ௝௝

z1

x1

x2

x3

x4

x5 ௜ݖ ൌ 11 ൅ ݁௬೔
matrix-vector multiplication per component operation

z2

z3

w1

w2

w3
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Multilayer perceptron

o1i1

i2

input 
layer

output 
layer

i3

i4

o2

o3

o4

hidden 
layer
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Feed forward

• Global network definition

• Layer values: ଴ ଵ ே
with ଴ and ே

• Vector of all unit parameters: ଵ ଶ ே
(weights by layer concatenated)

• Feed forward: ௡ାଵ ௡ାଵ ௡ାଵ ௡
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Error back-propagation

• Training set: ܫ௣, ௣ܱ ଵஸ௣ஸ௉ input-output samples• ܺ௣,଴ ൌ ௣,଴ܫ and   ܺ௣,௡ାଵ ൌ ௡ାଵܨ ௡ܹାଵ, ܺ௣,௡
• Error on the training set:ܧ ܹ ൌ ∑ ܨ ܹ, ௣ܫ െ ௣ܱ ଶ௣ ൌ 	∑ ܺ௣,ே െ ௣ܱ ଶ௣
• Minimization of ܧ ܹ by gradient descent:

– Randomly initialize ܹ 0
– Iterate ܹ ݐ ൅ 1 ൌ ܹ ݐ െ  డாడௐ ݐ  ൌ ݂ ݐ or    ൌ డమாడௐమ ݐ ିଵ
– Back-propagation: 

డாడௐ೙ is computed by backward recurrence from డி೙డௐ೙ and  
డி೙డ௑೙షభ applying iteratively   ݃	݋	݂ ᇱ ൌ 	 ݃ᇱ݋	݂ . ݂′
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ImageNet Challenge 2012
[Krizhevsky et al., 2012]
• 7 hidden layers, 650K units, 60M parameterss (W	)
• GPU implementation (50× speed-up over CPU)
• Trained on two GPUs for a week

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with 
Deep Convolutional Neural Networks, NIPS 2012
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ImageNet Classification 2012 Results
Krizhevsky et al. -- 16.4% error (top-5)
Next best (non-convnet) – 26.2% error
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ImageNet Classification 2013 Results
http://www.image-net.org/challenges/LSVRC/2013/results.php
Demo: http://www.clarifai.com/
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Engineered versus learned descriptors
• Classical “classification pipeline”

– Extraction(s) – [aggregation] – optimization(s) –
classifier(s) – one or more levels of fusion – re-scoring 
(non exhaustive example)

– Most of the stages are explicitly engineered: the form 
of descriptors or processing steps has been thought 
and designed by a skilled engineer or researcher

– Lots of experience and acquired expertise by 
thousands of smart people over tens of years

– Learning concerns only the classifier(s) stages and a 
few hyper-parameters controlling the other ones

– Almost everything has been tried
– The more you incorporate, the more you get (at a cost)
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Engineered versus learned descriptors
• Deep learning pipeline: MLP with about 8 layers

– Advances in computing power (Tflops): large networks possible
– Algorithmic advance: combination of convolutional layers for the 

lower stages with all-to-all layers; the topology of the image is 
preserved in the lower layers with weights shared between the 
units within a layer

– Algorithmic advances: NN researchers finally find out how to have 
back-propagation working for MLP with more than three layers

– Image pixels are entered directly into the first layer
– The first (resp. intermediate, last) layers practically compute low-

level (resp. intermediate level, semantic) descriptors
– Everything is made using a unique and homogeneous architecture
– A single network can be used for detecting many target concepts
– All the level are jointly optimized at once
– Requires huge amounts of training data
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Engineered versus learned descriptors

• Deep learning (learned descriptors) outperform 
almost everything else in more and more domains

• The only observed weakness is that it does so 
only when a lot of training data is available

• Some trials show that combining deep learning 
and classical approaches outperforms both 
[Snoek 2013]

• Many hybrid approaches are being studied and 
appear promising


